Subscribe to RSS
DOI: 10.1055/s-0035-1561388
Recent Advances in Exploring Diverse Decarbonylation, Decarboxylation and Desulfitation Coupling Reactions for Organic Transformations
Publication History
Received: 21 December 2015
Accepted after revision: 05 February 2016
Publication Date:
07 March 2016 (online)
Abstract
Decarbonylation, decarboxylation and desulfitation reactions have been adopted as new strategies and applied in organic synthesis for their obvious advantages over traditional cross-coupling reactions involving organometallic reagents. In this account, we highlight our recent progress on the development of novel decarbonylative, decarboxylative and desulfitative coupling reactions to construct diverse hydrocarbons via transition-metal catalysis and visible-light photoredox catalysis. In addition, mechanistic investigations describe the decarboxylative process of α-keto acids by trapping possible formed intermediates, and plausible reaction pathways are proposed. In another case, we demonstrate the successful desulfitative reactions of sulfinic acids and their sodium salts with other organic coupling partners. Among these, several reactions tolerate a range of functional groups whilst others even occur in aqueous solution.
1 Introduction
2 Palladium-Catalyzed Decarbonylative Arylation of Azoles with Arylamides
3 Transition-Metal-Catalyzed (-Mediated) Decarboxylation of Carboxylic Acids and their Derivatives
4 Visible-Light Photoredox-Catalyzed Decarboxylative Coupling Reactions
5 Transition-Metal-Catalyzed Desulfitative Coupling Reactions
6 Conclusion
-
References
- 1a Hudlicky M. Oxidations in Organic Chemistry . American Chemical Society; Washington: 1990: 105-109
- 1b March J. Advanced Organic Chemistry . Wiley; New York: 1992
- 1c Beyer H, Walter W. Lehrbuch der Organischen Chemie . Hirzel Verlag; Stuttgart: 2004. 24th ed
- 1d Vollhardt KP. C, Schore NE. Organische Chemie . Wiley-VCH; Weinheim: 2000. 3rd ed., S 89
- 2a Ueda M, Hartwig JF. Org. Lett. 2010; 12: 92
- 2b Maloney K, Kuethe J, Linn K. Org. Lett. 2011; 13: 102
- 2c Lu Q, Zhang J, Zhao G, Qi Y, Wang H, Lei A. J. Am. Chem. Soc. 2013; 135: 11481
- 2d Wang G.-W, Miao T. Chem. Eur. J. 2011; 17: 5787
- 2e Zhou XY, Luo JY, Liu J, Peng SM, Deng G.-J. Org. Lett. 2011; 13: 1432
- 2f Wang H, Li Y, Zhang R, Jin K, Zhao D, Duan C. J. Org. Chem. 2012; 77: 4849
- 3a Goossen LJ, Rodríguez N, Goossen K. Angew. Chem. Int. Ed. 2008; 47: 3100
- 3b Zhou C, Liu Q, Li Y, Zhang R, Fu X, Duan C. J. Org. Chem. 2012; 77: 10468
- 3c Chen W, Li P, Miao T, Meng L, Wang L. Org. Biomol. Chem. 2013; 11: 420
- 3d Cheng K, Hu S, Zhao B, Zhang X.-M, Qi C. J. Org. Chem. 2013; 78: 5022
- 3e Zhao F, Tan Q, Xiao F, Zhang S, Deng G.-J. Org. Lett. 2013; 15: 1520
- 3f Sévigny S, Forgione P. Chem. Eur. J. 2013; 19: 2256
- 4a Goossen LJ, Ghosh K. Chem. Commun. 2001; 2084
- 4b Goossen LJ, Döhring A. Adv. Synth. Catal. 2003; 345: 943
- 4c Goossen LJ, Paetzold J, Winkel L. Synlett 2002; 1721
- 4d Goossen LJ, Paetzold J. Angew. Chem. Int. Ed. 2004; 43: 1095
- 4e Liu J, Zhou XY, Rao HH, Xiao FH, Li C.-J, Deng G.-J. Chem. Eur. J. 2011; 17: 7996
- 4f Miao T, Wang G.-W. Chem. Commun. 2011; 47: 9501
- 4g Yao H, Yang L, Shuai Q, Li C.-J. Adv. Synth. Catal. 2011; 353: 1701
- 4h Behrends M, Sörmarker J, Sjöberg P, Larhed M. ACS Catal. 2011; 1: 1455
- 4i Liu B, Guo Q, Cheng Y, Lan J, You J. Chem. Eur. J. 2011; 17: 13415
- 4j Wu M, Luo J, Xiao F, Zhang S, Deng G.-J, Luo H.-A. Adv. Synth. Catal. 2012; 354: 335
- 5a Patureau FW, Glorius F. Angew. Chem. Int. Ed. 2011; 50: 1977
- 5b Guimond N, Gorelsky SI, Fagnou K. J. Am. Chem. Soc. 2011; 133: 6449
- 6 Li C, Li P, Yang J, Wang L. Chem. Commun. 2012; 48: 4214
- 7a Myers AG, Tanaka D, Mannion MR. J. Am. Chem. Soc. 2002; 124: 11250
- 7b Tanaka D, Romeril SP, Myers AG. J. Am. Chem. Soc. 2005; 127: 10323
- 8a Yin L, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 9610
- 8b Duan Z, Ranjit S, Zhang P, Liu X. Chem. Eur. J. 2009; 15: 3666
- 8c Hu J, Zhao N, Yang B, Wang G, Guo L, Liang Y, Yang S. Chem. Eur. J. 2011; 17: 5516
- 8d Zhang Y, Jamison TF, Patel S, Mainolfi N. Org. Lett. 2011; 13: 280
- 8e Feng Q, Song Q. Adv. Synth. Catal. 2014; 356: 1697
- 8f Sun Z, Zhang J, Zhao P. Org. Lett. 2010; 12: 992
- 8g Neely JM, Rovis T. J. Am. Chem. Soc. 2014; 136: 2735
- 8h Yang K, Zhang C, Wang P, Zhang Y, Ge H.-B. Chem. Eur. J. 2014; 20: 7241
- 8i Zhang F, Greaney MF. Org Lett. 2010; 12: 4745
- 8j Hwang J, Park K, Choe J, Min H, Song KH, Lee S. J. Org. Chem. 2014; 79: 3267
- 9 Li H, Li P, Wang L. Org. Lett. 2013; 15: 620
- 10 Li H, Li P, Tan H, Wang L. Chem. Eur. J. 2013; 19: 14432
- 11 Li H, Li P, Zhao Q, Wang L. Chem. Commun. 2013; 49: 9170
- 12 Li D, Wang M, Liu J, Zhao Q, Wang L. Chem. Commun. 2013; 49: 3640
- 13 Yu L, Li P, Wang L. Chem. Commun. 2013; 49: 2368
- 14a North M In Science of Synthesis . Vol. 19. Murahashi S.-I. Thieme; Stuttgart: 2004: 235
- 14b Breuer M, Ditrich K, Habicher T, Hauer B, Kebler M, Stürmer R, Zelinski T. Angew. Chem. Int. Ed. 2004; 43: 788
- 15 Chen L, Li H, Yu F, Wang L. Chem. Commun. 2014; 50: 14866
- 16 Tan H, Li H, Wang J, Wang L. Chem. Eur. J. 2015; 21: 1904
- 17 Li D, Xu N, Zhang Y, Wang L. Chem. Commun. 2014; 50: 14862
- 18a Kalyani D, McMurtrey KB, Neufeldt SR, Sanford MS. J. Am. Chem. Soc. 2011; 133: 18566
- 18b Ye Y, Sanford MS. J. Am. Chem. Soc. 2012; 134: 9034
- 18c Sahoo B, Hopkinson MN, Glorius F. J. Am. Chem. Soc. 2013; 135: 5505
- 18d Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
- 18e Tellis JC, Primer DN, Molander GA. Science 2014; 345: 433
- 18f Zoller J, Fabry DC, Ronge MA, Rueping M. Angew. Chem. Int. Ed. 2014; 53: 13264
- 18g Shu X.-Z, Zhang M, He Y, Frei H, Dean Toste F. J. Am. Chem. Soc. 2014; 136: 5844
- 18h Terrett JA, Cuthbertson JD, Shurtleff VW, MacMillan DW. C. Nature 2015; 524: 330
- 18i Fabry DC, Ronge MA, Zoller J, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 2801
- 18j Xuan J, Zeng T.-T, Feng Z.-J, Deng Q.-H, Chen J.-R, Lu L.-Q, Xiao W.-J, Alper H. Angew. Chem. Int. Ed. 2015; 54: 1625
- 19 Zhou C, Li P, Zhu X, Wang L. Org. Lett. 2015; 17: 6198
- 20 Xu N, Li P, Xie Z, Wang L. Chem. Eur. J. 2016; 22: 2236
- 21 Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299 ; and references cited therein
- 22 Tan H, Li H, Ji W, Wang L. Angew. Chem. Int. Ed. 2015; 54: 8374
- 23a Fan J.-H, Wei W.-T, Zhou M.-B, Song R.-J, Li J.-H. Angew. Chem. Int. Ed. 2014; 53: 6650
- 23b Xie J, Xu P, Li H, Xue Q, Jin H, Cheng Y, Zhu C. Chem. Commun. 2013; 49: 5672
- 23c Dai Q, Yu J, Jiang Y, Guo S, Yang H, Cheng J. Chem. Commun. 2014; 50: 3865
- 23d Matcha K, Narayan R, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 7985
- 23e Li Y.-M, Sun M, Wang H.-L, Tian Q.-P, Yang S.-D. Angew. Chem. Int. Ed. 2013; 52: 3972
- 24 Ji W, Tan H, Li P, Wang M, Wang L. Chem. Commun. 2016; 52: 1462
- 25 Heck RF. Acc. Chem. Res. 1979; 12: 146
- 26 Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 27 King AO, Okukado N, Negishi E.-i. J. Chem. Soc., Chem. Commun. 1977; 683
- 28 Miao T, Li P, Wang G.-W, Wang L. Chem. Asian J. 2013; 8: 3185
- 29 Miao T, Wang L. Adv. Synth. Catal. 2014; 356: 429
- 30 Miao T, Wang L. Adv. Synth. Catal. 2014; 356: 967
For selected reviews on carboxylic acids, see:
For selected examples with carboxylic acids, see:
For sulfinic acids used as arylation reagents, see: