Synlett 2016; 27(18): 2571-2574
DOI: 10.1055/s-0035-1561497
letter
© Georg Thieme Verlag Stuttgart · New York

Passerini/Friedel–Crafts Route towards Indole Derivatives

El Hachemia El Mamouni
a   Laboratoire LSO ENSTA-Polytechnique-CNRS, UMR 7652, Ecole Nationale Supérieure de Techniques Avancées, 828 Bd des Maréchaux, Palaiseau, France   Email: laurent.elkaim@ensta-paristech.fr
,
Aurélie Dos Santos
a   Laboratoire LSO ENSTA-Polytechnique-CNRS, UMR 7652, Ecole Nationale Supérieure de Techniques Avancées, 828 Bd des Maréchaux, Palaiseau, France   Email: laurent.elkaim@ensta-paristech.fr
,
Laurent El Kaïm*
a   Laboratoire LSO ENSTA-Polytechnique-CNRS, UMR 7652, Ecole Nationale Supérieure de Techniques Avancées, 828 Bd des Maréchaux, Palaiseau, France   Email: laurent.elkaim@ensta-paristech.fr
,
Hocine Ilitki*
b   Laboratoire de chimie et d'électrochimie des complexes métalliques, Département de chimie organique industrielle, faculté de chimie, Université des Sciences et de Technologie d’Oran (USTO), M.B Oran, Algeria   Email: ilikti@univ-usto.dz
› Author Affiliations
Further Information

Publication History

Received: 10 April 2016

Accepted after revision: 10 June 2016

Publication Date:
03 August 2016 (online)


Abstract

The Passerini adducts of various electron-rich aromatic aldehydes with pivalic acid were used as electrophiles towards indoles in a Friedel–Crafts-type reaction. The Friedel–Crafts step was performed under microwave conditions using a catalytic amount of FeCl3.

Supporting Information

 
  • References and Notes

    • 1a Passerini M. Gazz. Chim. Ital. 1921; 51: 126

    • For reviews, see:
    • 1b Banfi L, Riva R. Org. React. (N. Y.) 2005; 65: 1
    • 1c Kazemizadeh AR, Ramazani A. Curr. Org. Chem. 2012; 16: 418

      For some reviews, see:
    • 2a Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 2b Bienaymé H, Hulme C, Oddon G, Schmitt P. Chem. Eur. J. 2000; 6: 3321
    • 2c Dömling A. Curr. Opin. Chem. Biol. 2002; 6: 306
    • 2d Ugi I, Werner B, Dömling A. Molecules 2003; 8: 53
    • 2e Multicomponent Reactions. Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005
    • 2f Dömling A. Chem. Rev. 2006; 106: 17
    • 2g Ruijter E, Scheffelaar R, Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
    • 2h Isocyanide Chemistry: Applications in Synthesis and Material Science. Nenajdenko VG. Wiley-VCH; Weinheim: 2012
    • 2i Multicomponent Reactions in Organic Synthesis. Zhu J, Wang Q, Wang M.-X. Wiley-VCH; Weinheim: 2014

      For reduction of Passerini adducts, see:
    • 3a Neo AG, Delgado J, Polo C, Marcaccini S, Marcos CF. Tetrahedron Lett. 2005; 46: 23
    • 3b Neo AG, Carrillo RM, Delgado J, Marcaccini S, Marcos CF. Mol. Divers. 2011; 15: 529
    • 3c Yu H, Gai T, Sun WL, Zhang MS. Chin. Chem. Lett. 2011; 22: 379
    • 3d Dos Santos A, El Kaïm L. Synlett 2014; 25: 1901
    • 3e For an amination of Passerini adducts, see: Neo AG, Lopez-Garcia L, Marcos CF. RCS Adv. 2014; 4: 40044
    • 4a Cordier M, Dos Santos A, El Kaïm L, Narboni N. Chem. Commun. 2015; 51: 6411
    • 4b See also ref 3c.

      Solventless conditions were adopted for all Passerini reactions. For references, see:
    • 5a Koszelewski D, Szymanski W, Krysiak J, Ostaszewski R. Synth. Commun. 2008; 28: 1120
    • 5b Bousquet T, Jida M, Soueidan M, Deprez-Poulain R, Agbossou-Niedercorn F, Pelinski L. Tetrahedron Lett. 2012; 53: 306
  • 6 Passerini Adduct 1b; Typical Procedure: A mixture of p-anisaldehyde (0.37 mL, 3.0 mmol), pivalic acid (0.31 g, 3.0 mmol), and cyclohexyl isocyanide (0.38 mL, 3.0 mmol) was stirred at r.t. for 3 d. Purification by flash chromatography with a gradient (Et2O–PE, 40:60 then 60:40 and 80:20) gave the desired 1b as a white solid in 70% isolated yield (729 mg, 2.1 mmol); mp 142–143 °C; Rf 0.43 (Et2O–petroleum ether, 70:30). 1H NMR (400 MHz, CDCl3): δ = 7.31 (d, J = 8.7 Hz, 2 H), 6.85 (d, J = 8.7 Hz, 2 H), 6.03 (d, J = 7.8 Hz, 1 H), 5.96 (s, 1 H), 3.70–3.86 (m, 4 H), 1.80–1.91 (m, 2 H), 1.52–1.69 (m, 3 H), 1.29–1.40 (m, 2 H), 1.23 (s, 9 H), 1.04–1.19 (m, 3 H). 13C NMR (100.6 MHz, CDCl3): δ = 176.4, 167.7, 159.8, 128.6, 128.0, 114.0, 74.8, 55.2, 47.9, 38.7, 32.8, 27.0, 25.4, 24.6. HRMS: m/z calcd for C20H29NO4: 374.2097; found: 374.2103. IR (thin film): 3435, 3041, 3003, 2946, 2857, 1734, 1679, 1613, 1587, 1533, 1526, 1513, 1453, 1305, 1249, 1186, 1142, 1035, 941, 834 cm–1. Friedel-Crafts Product 3a; Typical Procedure: To a solution of Passerini adduct 1b (100 mg, 0.29 mmol) in toluene (1 mL, 0.33 M) were added indole 2a (34 mg, 0.29 mmol) and FeCl3 (0.05 equiv). The resulting mixture was heated at 130 °C for 15 min under microwave conditions (CEM Discover microwave, 150 W). After removal of the solvent under reduced pressure, the crude was purified by flash chromatography (gradient EtOAc–PE, 40:60 to 50:50) to afford 3a as a red oil in 70% isolated yield (83 mg, 0.229 mmol); Rf 0.25 (EtOAc–petroleum ether, 40:60). 1H NMR (400 MHz, CDCl3): δ = 8.72 (s, 1 H), 7.47 (d, J = 7.8 Hz, 1 H), 7.35 (d, J = 8.1 Hz, 1 H), 7.28–7.32 (m, 2 H), 7.21 (dd, J = 11.2, 4.0 Hz, 1 H), 7.11 (dd, J = 11.0, 4.0 Hz, 1 H), 6.84–6.92 (m, 3 H), 5.84 (d, J = 8.2 Hz, 1 H), 5.09 (s, 1 H), 3.87–3.97 (m, 1 H), 3.83 (s, 1 H), 1.83–1.96 (m, 2 H), 1.57–1.67 (m, 3 H), 1.27–1.39 (m, 2 H), 0.97–1.12 (m, 3 H). 13C NMR (100.6 MHz, CDCl3): δ = 171.9, 158.6, 136.7, 131.8, 129.6, 126.5, 124.1, 122.3, 119.7, 119.1, 114.8, 114.1, 111.5, 55.3, 50.5, 48.4, 33.0, 32.9, 25.4, 24.8. HRMS: m/z calcd for C23H26N2O2: 362.1994; found: 362.1985. IR (thin film): 3478, 3406, 3009, 2936, 2857, 1652, 1611, 1514, 1457, 1416, 1338, 1303, 1250, 1179, 1095, 1035, 909 cm–1.
    • 7a Sundberg RJ. Indoles . Academic Press; San Diego: 1996
    • 7b Sundberg RJ. The Chemistry of Indoles . Academic Press; New York: 1970
    • 8a Shang H, Hao F.-Y, Pan L, Chen H, Cheng M.-S. Heterocycles 2011; 83: 1757
    • 8b Zhan Z, Li R, Zheng Y, Zhou Y, Hai L, Wu Y. Synlett 2015; 26: 2261
    • 8c For a recent FeCl3-catalyzed formation of bisindole derivatives, see: Zheng Y, Li R.-J, Zhan Z, Zhou Y, Hai L, Wu Y. Chin. Chem. Lett. 2016; 27: 41
  • 9 Shiri M. Chem. Rev. 2012; 112: 3508

    • For some examples, see:
    • 10a Kalinski C, Umkehrer M, Schmidt J, Ross G, Kolb J, Burdack C, Hiller W, Hoffmann SD. Tetrahedron Lett. 2006; 47: 4683
    • 10b Riguet E. J. Org. Chem. 2011; 76: 8143
    • 10c Modha SG, Kumar A, Vachhani D.-D, Jacobs J, Sharma S.-K, Parmar V.-S, Van Meervelt L, Van der Eycken EV. Angew. Chem. Int. Ed. 2012; 51: 9572