Synthesis 2016; 48(17): 2889-2895
DOI: 10.1055/s-0035-1561643
paper
© Georg Thieme Verlag Stuttgart · New York

Sc(OTf)3-Catalyzed Cyclization of Allyl Amides of Ethenetricarboxylate

Shoko Yamazaki*
a   Department of Chemistry, Nara University of Education, Takabatake-cho, Nara 630-8528, Japan   Email: yamazaks@nara-edu.ac.jp
,
Mamiko Niina
a   Department of Chemistry, Nara University of Education, Takabatake-cho, Nara 630-8528, Japan   Email: yamazaks@nara-edu.ac.jp
,
Kiyomi Kakiuchi
b   Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), Takayama, Ikoma, Nara 630-0192, Japan
› Author Affiliations
Further Information

Publication History

Received: 17 March 2016

Accepted after revision: 18 April 2016

Publication Date:
19 May 2016 (online)


Abstract

Catalytic cyclization of allyl amides of ethenetricarboxylate leading to pyrrolidines has been examined. Reaction of allyl amides of ethenetricarboxylate with Sc(OTf)3 (0.2 equiv) gave 4-hydroxymethyl-2-oxopyrrolidine derivatives as major products. The formation of hydroxymethylpyrrolidines may arise from participation of adventitious water in situ. Sc(OTf)3-catalyzed cyclization reactions of the allyl amides with TMSX (X = Cl, Br) proceeded efficiently to give halogenated 2-oxopyrrolidine derivatives. Sc(OTf)3-catalyzed cyclization reactions of the allyl ester with TMSX (X= Cl, Br) also proceeded to give halogenated 2-oxotetrahydrofuran derivatives.

Supporting Information

 
  • References and Notes

    • 1a Olah GA. Friedel–Crafts Chemistry . Wiley; New York: 1973
    • 1b Berliner E. Org. React. 1949; 5: 229
    • 2a Mukaiyama T, Hayashi M. Chem. Lett. 1974; 15
    • 2b Mukaiyama T, Murakami M. Synthesis 1987; 1043
    • 2c Sammakia T, Smith RS. J. Am. Chem. Soc. 1994; 116: 7915
    • 2d Denmark SE, Almstead NG. J. Am. Chem. Soc. 1991; 113: 8089
    • 2e Li H, Loh T.-P. J. Am. Chem. Soc. 2008; 130: 7194
    • 2f Zhao Y.-J, Loh T.-P. J. Am. Chem. Soc. 2008; 130: 10024
    • 2g Xu T, Yu Z, Wang L. Org. Lett. 2009; 11: 2113
    • 2h Kang S.-K, Kim Y.-M, Ha Y.-H, Yu C.-M, Yang H, Lim Y. Tetrahedron Lett. 2002; 43: 9105
    • 2i Kim Y.-H, Lee K.-Y, Oh C.-Y, Yang J.-G, Ham W.-H. Tetrahedron Lett. 2002; 43: 837
    • 2j Yamazaki S, Takebayashi M. J. Org. Chem. 2011; 76: 6432
    • 3a Snider BB In Comprehensive Organic Synthesis II . Vol. 2. Knochel P, Molander GA. Elsevier; Oxford: 2014: 148
    • 3b Olier C, Kaafarani M, Gastaldi S, Bertrand MP. Tetrahedron 2010; 66: 413
    • 3c Miles RB, Davis CE, Coates RM. J. Org. Chem. 2006; 71: 1493
    • 3d Chavre SN, Choo H, Lee JK, Pae AN, Kim Y, Cho YS. J. Org. Chem. 2008; 73: 7467
    • 3e Jacolot M, Jean M, Levoin N, van de Weghe P. Org. Lett. 2012; 14: 58
    • 3f Overman LE, Velthuisen EJ. J. Org. Chem. 2006; 71: 1581
    • 3g Miranda PO, Díaz DD, Padrón JI, Ramírez MA, Martín VS. J. Org. Chem. 2005; 70: 57

      For catalytic Friedel–Crafts acylation, see:
    • 4a Sartori G, Maggi R. Chem. Rev. 2011; 111: PR181
    • 4b Parella R, , Naveen Kumar A, Babu SA. Tetrahedron Lett. 2013; 54: 1738
    • 4c Tran PH, Duus F, Le TN. Tetrahedron Lett. 2012; 53: 222
    • 4d Kawamura M, Cui D.-M, Hayashi T, Shimada S. Tetrahedron Lett. 2003; 44: 7715

      For catalytic substitution reactions of acetals, see:
    • 5a Okitsu O, Suzuki R, Kobayashi S. Synlett 2000; 989
    • 5b Sugiura M, Kobayashi S. Org. Lett. 2001; 3: 477
    • 5c Schneider U, Dao HT, Kobayashi S. Org. Lett. 2010; 12: 2488

      For catalytic Prins-type reaction, see:
    • 6a Miranda PO, Carballo RM, Martín VS, Padrón JI. Org. Lett. 2009; 11: 357
    • 6b Reddy BV. S, Venkateswarlu A, Borkar P, Yadav JS, Sridhar B, Grée R. J. Org. Chem. 2014; 79: 2716
    • 6c Yadav JS, Subba Reddy BV, Chaya DN, Narayana Kumar GG. K. S, Aravind S, Kunwar AC, Madavi C. Tetrahedron Lett. 2008; 49: 3330
    • 7a Massiot G, Delaude C In The Alkaloids: Chemistry and Pharmacology . Vol. 27. Brossi A. Academic Press; San Diego: 1986: 269
    • 7b Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 7c O’Hagan D. Nat. Prod. Rep. 2000; 17: 435
    • 7d Felpin F.-X, Lebreton J. Eur. J. Org. Chem. 2003; 3693
    • 7e Bellina F, Rossi R. Tetrahedron 2006; 62: 7213
    • 7f Robertson J, Stevens K. 2014; 31: 1721
    • 7g Fukuda T, Sudoh Y, Tsuchiya Y, Okuda T, Igarashi Y. J. Nat. Prod. 2014; 77: 813

      For recent examples of pyrrolidine syntheses, see:
    • 8a Trost BM, Lam TM, Herbage MA. J. Am. Chem. Soc. 2013; 135: 2459
    • 8b Jui NT, Garber JA. O, Finelli FG, MacMillan DW. C. J. Am. Chem. Soc. 2012; 134: 11400
    • 8c Tkatchouk E, Mankad NP, Benitez D, Goddard WA. III, Toste FD. J. Am. Chem. Soc. 2011; 133: 14293
    • 8d Carballo RM, Purino M, Ramírez MA, Martín VS, Padrón JI. Org. Lett. 2010; 12: 5334
    • 8e Yu J.-D, Ding W, Lian G.-Y, Song K.-S, Zhang D.-W, Gao X, Yang D. J. Org. Chem. 2010; 75: 3232
    • 8f Barber DM, Ďuriš A, Thompson AL, Sanganee HJ, Dixon DJ. ACS Catal. 2014; 4: 634
    • 8g En D, Zou G.-F, Guo Y, Liao W.-W. J. Org. Chem. 2014; 79: 4456
    • 8h Cheng T, Meng S, Huang Y. Org. Lett. 2013; 15: 1958
    • 8i Gärtner M, Weihofen R, Helmchen G. Chem. Eur. J. 2011; 17: 7605
    • 8j Brown AR, Uyeda C, Brotherton CA, Jacobsen EN. J. Am. Chem. Soc. 2013; 135: 6747
    • 8k Gesmundo NJ, Grandjean J.-MM, Nicewicz DA. Org. Lett. 2015; 17: 1316
    • 8l Musacchio AJ, Nguyen LQ, Beard GH, Knowles RR. J. Am. Chem. Soc. 2014; 136: 12217
  • 9 Snider BB, Roush DM. J. Org. Chem. 1979; 44: 4229
    • 10a Yamazaki S, Fujinami K, Maitoko Y, Ueda K, Kakiuchi K. J. Org. Chem. 2013; 78: 8405
    • 10b Fukushima Y, Yamazaki S, Ogawa A. Org. Biomol. Chem. 2014; 12: 3964
    • 10c Yamazaki S, Wada J, Kakiuchi K. Can. J. Chem. 2015; 93: 1122
  • 11 Yamazaki S, Ueda K, Fukushima Y, Ogawa A, Kakiuchi K. Eur. J. Org. Chem. 2014; 7023
  • 12 Yamazaki S, Ohmitsu K, Ohi K, Otsubo T, Moriyama K. Org. Lett. 2005; 7: 759
  • 13 Satchell DP. N, Satchell RS. Chem. Rev. 1969; 69: 251
    • 14a Ho ML, Flynn AB, Ogilvie WW. J. Org. Chem. 2007; 72: 977
    • 14b Lemay AB, Vulic KS, Ogilvie WW. J. Org. Chem. 2006; 71: 3615
    • 15a Olah GA, Narang SC. Tetrahedron 1982; 38: 2225
    • 15b Schmidt AH. Aldrichimica Acta 1981; 14: 31
  • 16 We have also reported that the non-cyclized Cl-adduct of allyl ester 5 was converted into cyclized 7a (Equation 5) by the treatment of TiCl4 at room temperature (see ref. 10a).