Synlett 2016; 27(15): 2209-2212
DOI: 10.1055/s-0035-1562114
letter
© Georg Thieme Verlag Stuttgart · New York

Zn(OTf)2-Mediated Expeditious and Solvent-Free Synthesis of Propargylamines via C–H Activation of Phenylacetylene

Prashant B Sarode
Department of Chemistry, G. S. Science, Arts and Commerce College, Khamgaon 444303, India   Email: chemants@gmail.com
,
Sandeep P Bahekar
Department of Chemistry, G. S. Science, Arts and Commerce College, Khamgaon 444303, India   Email: chemants@gmail.com
,
Hemant S Chandak*
Department of Chemistry, G. S. Science, Arts and Commerce College, Khamgaon 444303, India   Email: chemants@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 23 February 2016

Accepted after revision: 10 April 2016

Publication Date:
10 May 2016 (online)


Abstract

Zn(OTf)2-mediated expeditious and solvent-free synthesis of propargylamines via A3 coupling of aldehydes, amines, and phenylacetylene has been described. The described protocol proceeds effectively with variety of substituted benzaldehydes, enolizable aldehyde, and formaldehyde. Recyclability of the catalyst, low catalyst loading, and use of inexpensive catalyst are the key features of the present protocol.

Supporting Information

 
  • References and Notes

    • 1a Anastas PT, Warner JC. Green Chemistry: Theory and Practice . Oxford University Press; New York: 2000
    • 1b Jiménez-González C, Constable DJ, Ponder CS. Chem. Soc. Rev. 2012; 41: 1485
    • 1c Sheldon RA. Chem. Soc. Rev. 2012; 41: 1437
  • 2 Choudhury LH, Parvin T. Tetrahedron 2011; 67: 8213
    • 3a Nasir Baig RB, Varma RS. Solvent-Free Synthesis. In An Introduction to Green Chemistry Methods . Future Science; London: 2013: 18-38
    • 3b Singh MS, Chowdhury S. RSC Adv. 2012; 2: 4547
    • 4a Li Z, Wei C, Chen L, Varma RS, Li C.-J. Tetrahedron Lett. 2004; 45: 2443
    • 4b Wei C, Li Z, Li C.-J. Org. Lett. 2003; 5: 4473
    • 4c Yan W, Wang R, Xu Z, Xu J, Lin L, Shen Z, Zhou Y. J. Mol. Catal. A: Chem. 2006; 255: 81
    • 4d Zhang Y, Santos AM, Herdtweck E, Mink J, Kühn FE. New J. Chem. 2005; 29: 366
  • 6 Lo VK.-Y, Liu Y, Wong M.-K, Che C.-M. Org. Lett. 2006; 8: 1529
  • 7 Zhang Y, Li P, Wang M, Wang L. J. Org. Chem. 2009; 74: 4364
    • 8a Li P, Zhang Y, Wang L. Chem. Eur. J. 2009; 15: 2045
    • 8b Chen W.-W, Nguyen RV, Li C.-J. Tetrahedron Lett. 2009; 50: 2895
    • 9a Choudary BM, Sridhar C, Kantam ML, Sreedhar B. Tetrahedron Lett. 2004; 45: 7319
    • 9b Fodor A, Kiss Á, Debreczeni N, Hell Z, Gresits I. Org. Biomol. Chem. 2010; 8: 4575
    • 9c Aliaga MJ, Ramón DJ, Yus M. Org. Biomol. Chem. 2010; 8: 43
    • 10a Wang M, Li P, Wang L. Eur. J. Org. Chem. 2008; 2255
    • 10b Patil MK, Keller M, Reddy BM, Pale P, Sommer J. Eur. J. Org. Chem. 2008; 4440
    • 10c Li P, Wang L. Tetrahedron 2007; 63: 5455
    • 11a Jeganathan M, Dhakshinamoorthy A, Pitchumani K. ACS Sustainable Chem. Eng. 2014; 2: 781
    • 11b Mallampati R, Valiyaveettil S. ACS Sustainable Chem. Eng. 2014; 2: 855
    • 11c Karimi B, Gholinejad M, Khorasani M. Chem. Commun. 2012; 48: 8961
    • 11d Salam N, Sinha A, Roy AS, Mondal P, Jana NR, Islam SM. RSC Adv. 2014; 4: 10001
    • 12a Yang J, Li P, Wang L. Catal. Commun. 2012; 27: 58
    • 12b Li P, Regati S, Huang H.-C, Arman HD, Chen B.-L, Zhao JC. G. Chin. Chem. Lett. 2015; 26: 6
    • 12c Borah BJ, Borah SJ, Saikia L, Dutta DK. Catal. Sci. Tech. 2014; 4: 1047
    • 12d Bhuyan D, Saikia M, Saikia L. Catal. Commun. 2015; 58: 158
    • 12e Bosica G, Gabarretta J. RSC Adv. 2015; 5: 46074
    • 12f Xiong X, Chen H, Zhu R. Chin. J. Catal. 2014; 35: 2006
    • 12g Xiong X, Chen H, Zhu R. Catal. Commun. 2014; 54: 94
    • 12h Dulle J, Thirunavukkarasu K, Mittelmeijer-Hazeleger MC, Andreeva DV, Shiju NR, Rothenberg G. Green Chem. 2013; 15: 1238
  • 13 González MJ, Lopez LA, Vicente R. Tetrahedron Lett. 2015; 56: 1600
    • 14a Kende AS, Liebeskind LS. J. Am. Chem. Soc. 1976; 98: 267
    • 14b Wongsa N, Sommart U, Ritthiwigrom T, Yazici A, Kanokmedhakul S, Kanokmedhakul K, Willis AC, Pyne SG. J. Org. Chem. 2013; 78: 1138
    • 14c Binda C, Hubálek F, Li M, Herzig Y, Sterling J, Edmondson DE, Mattevi A. J. Med. Chem. 2004; 47: 1767
  • 15 Park K, Heo Y, Lee S. Org. Lett. 2013; 15: 3322
    • 16a Kantam ML, Balasubrahmanyam V, Kumar KS, Venkanna G. Tetrahedron Lett. 2007; 48: 7332
    • 16b Ramu E, Varala R, Sreelatha N, Adapa SR. Tetrahedron Lett. 2007; 48: 7184
    • 16c Mukhopadhyay C, Rana S. Catal. Commun. 2009; 11: 285
    • 16d Eagalapati NP, Rajack A, Murthy YL. N. J. Mol. Catal. A: Chem. 2014; 381: 126
    • 17a Corey EJ, Shimoji K. Tetrahedron Lett. 1983; 24: 169
    • 17b Afraj SN, Chen C, Lee G.-H. RSC Adv. 2014; 4: 26301
    • 17c Borah BJ, Borah SJ, Saikia K, Dutta DK. Catal. Sci. Technol. 2014; 4: 4001
    • 18a Zhang X, Corma A. Angew. Chem. 2008; 120: 4430
    • 18b Shi L, Tu Y, Wang M, Zhang F, Fan C. Org. Lett. 2004; 6: 1001
    • 18c Ren G, Zhang J, Duan Z, Cui M, Wu Y. Aust. J. Chem. 2009; 62: 75
  • 19 Tajbaksh M, Farhang M, Mardani HR, Hosseinzadeh R, Sarrafi Y. Chin. J. Catal. 2013; 34: 2217
  • 20 Typical Experimental Procedure: Preparation of 1-(1,3-Diphenylprop-2-yn-1-yl)piperidine (4a) To a 25 mL flask were added aldehyde 1a (0.110 mL, 1.0 mmol), amine 2a (0.130 mL, 1.2 mmol), alkyne 3a (0.165 mL, 1.5 mmol), and Zn(OTf)2 (0.02 g, 0.05 mmol). The reaction mixture was stirred at 100 °C until complete consumption of starting aldehyde (TLC monitoring). The reaction mixture was cooled to room temperature, diluted with EtOAc, and then washed with cold H2O (2 × 5 mL). The organic phase was separated, and the aqueous layer was extracted further with EtOAc (2 × 5 mL). Concentration of the combined organic layers afforded the crude product, which was further purified by column chromatography on 100–200 silica gel (hexane–EtOAc, 20:1) to afford propargylamine 4a as a pale yellow oil; yield 0.284g, 96%; Rf = 0.8 (5% EtOAc–hexane). 1H NMR (500 MHz, CDCl3): δ = 7.65–7.63 (m, 2 H), 7.55–7.51 (m, 2 H), 7.38–7.29 (m, 6 H), 4.81 (s, 1 H), 2.62–2.55 (m, 4 H), 1.63–1.57 (m, 4 H), 1.47–1.45 (m, 2 H). The catalyst was recovered from the aqueous layer via evaporation under reduced pressure and dried at 120 °C for 2 h to obtain pure Zn(OTf)2. The recovered catalyst was reused for the next reaction in the same way.