Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(16): 2327-2332
DOI: 10.1055/s-0035-1562470
DOI: 10.1055/s-0035-1562470
letter
Facile Synthesis of Naphthothiophenone Derivatives and Anthradithiophenedione via Friedel–Crafts Acylation and Their Fundamental Properties
Further Information
Publication History
Received: 08 May 2016
Accepted after revision: 14 June 2016
Publication Date:
19 July 2016 (online)
![](https://www.thieme-connect.de/media/synlett/201616/lookinside/thumbnails/st-2016-u0327-l_10-1055_s-0035-1562470-1.jpg)
Abstract
Facile synthetic methods for constructing naphthothiophenone and its π-extended derivatives were developed. Naphthothiophenone and anthradithiophenedione were synthesized by the S-acylation of thiol to form chlorothioformate and subsequent Friedel–Crafts acylation. A bromination reaction of naphthothiophenone and its application to Suzuki–Miyaura cross-coupling was also carried out. The fundamental physical properties of these compounds were also investigated.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1562470. Experimental procedures for all new compounds are included, as well as a cif file for compounds 3 (CCDC 1477938) and 11 (CCDC 1477982).
- Supporting Information
-
References and Notes
- 1a Shen Q, Chen J, Wang Q, Deng X, Liu Y, Lai L. Eur. J. Med. Chem. 2014; 85: 119
- 1b Priestap HA. Biochem. Syst. Ecol. 2013; 46: 83
- 1c Ferrari S, Ingrami M, Soragni F, Wade RC, Costi MP. Bioorg. Med. Chem. Lett. 2013; 23: 663
- 1d Jung HJ, Kim KH, Kim ND, Han G, Kwon HJ. Bioorg. Med. Chem. Lett. 2011; 21: 1052
- 1e O'Leary J, Wallis JD. Chem. Eur. J. 2006; 12: 7724
- 1f Lowendahl AC, Allenmark SG. Biocatal. Biotransform. 1998; 16: 163
- 1g Andersson MA, Allenmark SG. Tetrahedron 1998; 54: 15293
- 1h Allenmark S, Claeson S. Enantiomer 1996; 1: 423
- 1i Szabó D, Kapovits I, Kucsman Á, Huszthy P, Argay G, Czugler M, Fülöp V, Kálmán A, Koritsánsky T, Párkányi L. J. Mol. Struct. 1993; 300: 23
- 1j Szabó D, Kapovits I. Sulfur Lett. 1991; 13: 37
- 1k Rabai J. Synthesis 1989; 523
- 1l Lakshmikantham MV, Chen W, Cava MP. J. Org. Chem. 1989; 54: 4746
- 1m Bailey RJ, Card PJ, Shechter H. J. Am. Chem. Soc. 1983; 105: 6096
- 2a Ogawa K, Dy J, Maeda R, Nagatsuka Y, Kamada K, Kobuke Y. J. Porphyrins Phthalocyanines 2013; 17: 821
- 2b Dy JT, Maeda R, Nagatsuka Y, Ogawa K, Kamada K, Ohta K, Kobuke Y. Chem. Commun. 2007; 5170
- 2c Jacquemin D, Preat J, Wathelet V, Fontaine M, Pèrpete EA. J. Am. Chem. Soc. 2006; 128: 2072
- 2d Cherepy NJ, Sanner RD. Opt. Mater. 2006; 28: 1350
- 2e Irie M, Ishida H, Tsujioka T. Jpn. J. Appl. Phys., Part 1 1999; 38: 6114
- 3a Torsi L, Magliulo M, Manoli K, Palazzo G. Chem. Soc. Rev. 2013; 42: 8612
- 3b Dong H, Fu X, Liu J, Wang Z, Hu W. Adv. Mater. 2013; 25: 6158
- 4a Tietze ML, Rose BD, Schwarze M, Fischer A, Runge S, Blochwitz-Nimoth J, Luessem B, Leo K, Brédas J.-L. Adv. Funct. Mater. 2016; 26: 3730
- 4b Russ B, Robb MJ, Popere BC, Perry EE, Mai C.-K, Fronk SL, Patel SN, Mates TE, Bazan GC, Urban JJ, Chabinyc ML, Hawker CJ, Segalman RA. Chem. Sci. 2016; 7: 1914
- 4c Deng Y, Sun B, He Y, Quinn J, Guo C, Li Y. Angew. Chem. Int. Ed. 2016; 55: 3459
- 4d Bin H, Zhang Z.-G, Gao L, Chen S, Zhong L, Xue L, Yang C, Li Y. J. Am. Chem. Soc. 2016; 138: 4657
- 4e Xia D, Marszalek T, Li M, Guo X, Baumgarten M, Pisula W, Müllen K. Org. Lett. 2015; 17: 3074
- 4f Li YN, Sonar P, Murphy L, Hong W. Energy Environ. Sci. 2013; 6: 1684
- 4g Liu Z, Zhang G, Cai Z, Chen X, Luo H, Li Y, Wang J, Zhang D. Adv. Mater. 2014; 26: 6965
- 4h Durso M, Gentili D, Bettini C, Zanelli A, Cavallini M, De Angelis F, Grazia Lobello M, Biondo V, Muccini M, Capelli R, Melucci M. Chem. Commun. 2013; 49: 4298
- 4i Yanai N, Mori T, Shinamura S, Osaka I, Takimiya K. Org. Lett. 2014; 16: 240
- 4j Mori T, Yanai N, Osaka I, Takimiya K. Org. Lett. 2014; 16: 1334
- 4k Aso Y, Ie Y, Ueta M, Nitani M, Tohnai N, Miyake M, Tada H. Chem. Mater. 2012; 24: 3285
- 5a Osaka I, Abe T, Mori H, Saito M, Takemura N, Koganezawa T, Takimiya K. J. Mater. Chem. C 2014; 2: 2307
- 5b Fukazawa A, Adachi M, Nakakura K, Saito S, Yamaguchi S. Chem. Commun. 2013; 49: 7117
- 5c Evans NR, White AJ. Org. Biomol. Chem. 2013; 11: 3871
- 5d Chen S, Bolag A, Nishida J.-i, Yamashita Y. Chem. Lett. 2011; 40: 998
- 5e Mazaki Y, Takiguchi N, Kobayashi K. Chem. Lett. 1991; 1117
- 6a Kamimoto N, Nakamura N, Tsutsumi A, Mandai H, Mitsudo K, Wakamiya A, Murata Y, Hasegawa J, Suga S. Asian J. Org. Chem. 2016; 5: 373
- 6b Mitsudo K, Sato H, Yamasaki A, Kamimoto N, Goto J, Mandai H, Suga S. Org. Lett. 2015; 17: 4858
- 6c Kamimoto N, Schollmeyer D, Mitsudo K, Suga S, Waldvogel SR. Chem. Eur. J. 2015; 21: 8257
- 6d Mitsudo K, Harada J, Tanaka Y, Mandai H, Nishioka C, Tanaka H, Wakamiya A, Murata Y, Suga S. J. Org. Chem. 2013; 78: 2763
- 6e Mitsudo K, Shimohara S, Mizoguchi J, Mandai H, Suga S. Org. Lett. 2012; 14: 2702
- 6f Mitsudo K, Kamimoto N, Murakami H, Mandai H, Wakamiya A, Murata Y, Suga S. Org. Biomol. Chem. 2012; 10: 9562
- 7 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision D.01. Gaussian, Inc; Wallingford: 2009
- 8a Schleyer Pv. R, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJ. R. J. Am. Chem. Soc. 1996; 118: 6317
- 8b Stanger A. J. Org. Chem. 2006; 71: 883
- 8c Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer Pv. R. Org. Lett. 2006; 8: 863
- 8d Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer Pv. R. Chem. Rev. 2005; 105: 3842
- 8e Schleyer Pv. R, Manoharan M, Wang Z.-X, Kiran B, Jiao H, Puchta R, van Eikema Hommes NJ. R. Org. Lett. 2001; 3: 2465
- 9 Synthesis of 3 To a solution of 1-naphthalenethiol (4, 2.42 g, 15 mmol) and triphosgene (13.4 g, 45 mmol) in CH2Cl2 (150 mL) was added dropwise pyridine (4.83 mL, 60 mmol) at 0 °C, and the mixture was stirred at the same temperature for 4 h. The reaction mixture was poured into cold water (1 L), and extracted with CH2Cl2 (6 × 50 mL). The combined organic phase was dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane) to afford 5 as yellow solid (3.13 g, 14.1 mmol, 93%). A suspension of 5 (762 mg, 3.42 mmol) and AlCl3 (1.368 g, 10.3 mmol) in CH2Cl2 (170 mL) was stirred at room temperature for 7 h. The resulting mixture was poured into H2O (500 mL) and was extracted with CHCl3 (5 × 30 mL). The combined organic phase was dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane–EtOAc, 10:1) to afford 3 as yellow solid (569 mg, 3.16 mmol, 92%); mp 137.5–138.5 °C (decomp.). 1H NMR (400 MHz, CDCl3): δ = 7.61 (d, J = 5.2 Hz, 1 H), 7.62 (d, J = 4.0 Hz, 1 H), 7.77 (dd, J = 8.4, 7.2 Hz, 1 H), 7.83 (dd, J = 5.2, 4.0 Hz, 1 H), 8.15 (d, J = 8.4 Hz, 1 H), 8.18 (d, J = 7.2 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 122.5, 125.0, 125.5, 127.9, 128.3, 131.0, 132.0, 133.2, 133.3, 133.8, 193.4. IR (KBr): 1684, 1491, 1410, 1240, 763 cm–1. HRMS (EI): m/z calcd for C11H6OS [M+]: 186.0133; found: 186.0007.
- 10 For the synthesis of phenylchlorothioformate, see: Xu J, Jiao L, Liang Y, Zhang Q, Zhang S. Synthesis 2006; 659
- 11 Nakayama and co-workers reported Friedel–Crafts cyclization leading to naphtho[1,8-bc]thiophene-2-thione, see: Nakayama J, Dan S, Hoshino M. J. Chem. Soc., Perkin Trans. 1 1981; 413
- 12 For the details, see the Supporting Information.
- 13 Thalacker C, Röger C, Würthner F. J. Org. Chem. 2006; 71: 8098
- 14a Billingsley KL, Barder TE, Buchwald SL. Angew. Chem. Int. Ed. 2007; 46: 5359
- 14b Billingsley KL, Buchwald SL. J. Org. Chem. 2008; 73: 5589
- 14c Ishiyama T, Murata M, Miyaura N. J. Org. Chem. 1995; 60: 7508
- 15 Schön JH, Kloc C, Batlogg B. Nature (London, U.K.) 2000; 406: 702
- 16 For the details of the cyclic voltammetry, see the Supporting Information.
- 17 Pommerehne J, Vestweber H, Guss W, Mahrt RF, Bässler H, Porsch M, Daub J. Adv. Mater. 1995; 7: 551
For representative works on naphthothiophenones, see:
For reviews, see:
Recent representative examples, see:
For representative examples, see: