Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(15): 2237-2240
DOI: 10.1055/s-0035-1562507
DOI: 10.1055/s-0035-1562507
letter
An Aluminum(III)-Catalyzed Thioamide–Aldehyde–Styrene Condensation: Direct Synthesis of Allylic Thioamide Derivatives
Further Information
Publication History
Received: 05 May 2016
Accepted after revision: 31 May 2016
Publication Date:
27 June 2016 (online)
Abstract
An aluminum(III) triflate catalyzed three-component synthesis of allylic thioamide derivatives by condensation of a thioamide, paraformaldehyde and a styrene is reported.
Key words
thioamides - paraformaldehyde - styrenes - allyl thioamides - multicomponent reactions - condensationSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1562507.
- Supporting Information
-
References and Notes
- 1a Petranyi G, Ryder NS, Stütz A. Science 1984; 224: 1239
- 1b Stütz A, Georgopoulos A, Granitzer W, Petranyi G, Berney D. J. Med. Chem. 1986; 29: 112
- 1c Stütz A. Angew. Chem. Int. Ed. Engl. 1987; 26: 320 ; Angew. Chem. 1987, 99, 323
- 2 Nanavati SM, Silverman RB. J. Am. Chem. Soc. 1991; 113: 9341
- 3 Cheikh RB, Chaabouni R, Laurent A, Mison P, Nafti A. Synthesis 1983; 685
- 4 Johannsen M, Jørgensen K. Chem. Rev. 1998; 98: 1689
- 5 Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
- 6 Burgess K, Liu LT, Pal B. J. Org. Chem. 1993; 58: 4758
- 7 Paquette LA, Leit SM. J. Am. Chem. Soc. 1999; 121: 8126
- 8 Nagashima H, Isono Y, Iwamatsu S. J. Org. Chem. 2001; 66: 315
- 9 Ghorai MK, Kumar A, Das K. Org. Lett. 2007; 9: 5441
- 10 Hayashi S, Yorimitsu H, Oshima K. Angew. Chem. Int. Ed. 2009; 48: 7224 ; Angew. Chem. 2009, 121, 7360
- 11 Farwick A, Helmchen G. Org. Lett. 2010; 12: 1108
- 12 Gärtner M, Weihofen R, Helmchen G. Chem. Eur. J. 2011; 17: 7605
- 13 Tsuji J, Takahashi H, Morikawa A. Tetrahedron Lett. 1965; 6: 4387
- 14a Trost BM, Fullerton TJ. J. Am. Chem. Soc. 1973; 95: 292
- 14b Trillo P, Baeza A, Nájera C. Eur. J. Org. Chem. 2012; 2012: 2929
- 15 Mayr H, Patz M. Angew. Chem. Int. Ed. 1994; 33: 938 ; Angew. Chem. 1994, 106, 990
- 16 Mayr H, Kempf B, Ofial AR. Acc. Chem. Res. 2003; 36: 66
- 17 Li Y, Zhang X.-S, Zhu Q.-L, Shi Z.-J. Org. Lett. 2012; 14: 4498
- 18 Xie Y, Hu J, Wang Y, Xia C, Huang H. J. Am. Chem. Soc. 2012; 134: 20613
- 19 Hu J, Xie Y, Huang H. Angew. Chem. Int. Ed. 2014; 53: 7272 ; Angew. Chem. 2014, 126, 7400
- 20 Goldfogel MJ, Roberts CC, Meek SJ. J. Am. Chem. Soc. 2014; 136: 6227
- 21 Banerjee D, Junge K, Beller M. Org. Chem. Front. 2014; 1: 368
- 22a Bauer W, Kühlein K In Houben–Weyl: Methoden der Organischen Chemie . Vol. E5. Thieme; Stuttgart: 1985: 1218
- 22b Jagodziński TS. Chem. Rev. 2003; 103: 197
- 22c Sośnicki JG, Jagodziński TS, Hansen PE. Tetrahedron 2001; 57: 8705
- 22d Matysiak J, Mącik-Niewiadomy G, Korniłłowicz T. Eur. J. Med. Chem. 2000; 35: 393
- 22e Schwarzer K, Wojczewski C, Engels W. Nucleosides Nucleotides Nucleic Acids . 2001; 20: 879
- 23 Tokuyama H, Yamashita T, Reding MT, Kaburagi Y, Fukuyama T. J. Am. Chem. Soc. 1999; 121: 3791
- 24 Magedov IV, Kornienko AV, Zotova TO, Drozd VN. Tetrahedron Lett. 1995; 36: 4619
- 25a Zhou W, Ni S, Mei H, Han J, Pan Y. Tetrahedron Lett. 2015; 56: 4128
- 25b Morse PD, Nicewicz DA. Chem. Sci. 2015; 6: 270
- 25c Minakata S, Morino Y, Oderaotoshi Y, Komatsu M. Org. Lett. 2006; 8: 3335
- 25d Weolowska A, Jagodziński TS, Sośnicki JG, Hansen PE. Pol. J. Chem. 2001; 75: 387
- 25e Jagodziński TS, Sośnicki JG, Krolikowska M. Heterocycl. Commun. 1995; 1: 353
- 26 Jagodziński TS, Sośnicki JG, Nowak-Wydra B. Pol. J. Chem. 1993; 67: 1043
- 27 Engman L. J. Org. Chem. 1991; 56: 3425
- 28 Quan Z.-J, Wang X.-C. Chem. Rec. 2016; 16: 435
- 29 Quan Z.-J, Hu W.-H, Zhang Z, Da Y.-X, Jia X.-D, Wang X.-C. Adv. Synth. Catal. 2013; 355: 891
- 30 Zhang Z, Zhang Y.-S, Quan Z.-J, Da Y.-X, Wang X.-C. Tetrahedron 2014; 70: 9093
- 31 Wang X.-X, Quan Z.-J, Wang X.-C. Asian J. Org. Chem. 2015; 4: 54
- 32 1-[(2E)-3-Phenylprop-2-en-1-yl]azepane-2-thione (4a); Typical Procedure An oven-dried tube was charged with a mixture of cyclic thioamide 1a (1 mmol, 0.129 g), paraformaldehyde (2a; 4 mmol, 0.120 g), styrene (3a; 1.2 mmol, 0.125 g), and Al(OTf)3 (20 mol%, 0.191 g). Anhydrous xylene (3 mL) was added from a straw, and the mixture was stirred at 110 °C for 24 h while the reaction was monitored by TLC. The mixture was cooled to r.t., and the reaction was quenched with sat. aq NH4Cl (3 mL). The mixture was extracted with EtOAc (3 × 15 mL) and the organic layers were combined, washed with brine, and dried (MgSO4). The crude product was purified by column chromatography [silica gel, PE–EtOAc (1:6)] to give a yellow oil; yield: 211 mg (0.86 mmol, 86%). 1H NMR (400 MHz, CDCl3): δ = 7.37–7.23 (m, 5 H), 6.49 (d, J = 15.6 Hz, 1 H), 6.18–6.11 (m, 1 H), 4.16 (d, J = 5.2 Hz, 2 H), 3.34 (s, 2 H), 2.57 (d, J = 5.2 Hz, 2 H), 1.66 (d, J = 38.4 Hz, 6 H). 13C NMR (100 MHz, CDCl3): δ = 175.6, 136.6, 132.5, 128.5, 127.5, 126.3, 125.1, 49.8, 48.6, 37.1, 29.9, 28.4, 23.4. HRMS (ESI+): m/z [M + H]+ calcd for C15H20NS: 246.1311; found: 246.1316.
- 33 N-Benzyl-N-[(2E)-3-Phenylprop-2-en-1-yl]ethanethioamide (5a); Typical Procedure An oven-dried tube was charged with a mixture of acyclic thioamide 1b (1 mmol, 0.165 g), paraformaldehyde (2a; 4 mmol, 0.120 g), styrene (3a; 1.2 mmol, 0.125 g), and Al(OTf)3 (20 mol%, 0.191 g). Anhydrous xylene (3 mL) was added from a straw, and the mixture was stirred at 110 °C for 24 h while the reaction was monitored by TLC. The mixture was cooled to r.t., and the reaction was quenched with sat. aq NH4Cl (3 mL). The mixture was extracted with EtOAc (3 × 15 mL) and the organic layers were combined, washed with brine, and dried (MgSO4). The crude product was purified by column chromatography [silica gel, PE–EtOAc (1:6)] to give a yellow oil; yield: 202 mg (0.72 mmol, 72%). 1H NMR (600 MHz, CDCl3): δ = 7.36–7.22 (m, 10 H), 6.43 (t, J = 16.2 Hz, 1 H), 6.19–6.05 (m, 1 H), 4.65 (s, 1 H), 4.54 (s, 1 H), 4.16 (d, J = 6.6 Hz, 1 H), 3.99 (d, J = 5.4 Hz, 1 H), 2.20 (d, J = 27.0 Hz, 3 H). 13C NMR (150 MHz, CDCl3): δ = 170.9, 133.1, 131.9, 128.9, 128.7, 128.6, 128.5, 128.2, 127.9, 127.7, 127.6, 127.4, 126.4, 124.5, 123.8, 50.9, 49.5, 48.1, 47.3, 21.7, 21.6. HRMS (ESI+): m/z [M + H]+ calcd for C18H20NS: 282.1311; found: 282.1314.