Subscribe to RSS
DOI: 10.1055/s-0036-1584306
Chromosomal Microarrays: Understanding Genetics of Neurodevelopmental Disorders and Congenital Anomalies
Publication History
05 October 2015
23 April 2016
Publication Date:
30 May 2016 (online)
Abstract
Chromosomal microarray (CMA) testing, used to identify DNA copy number variations (CNVs), has helped advance knowledge about genetics of human neurodevelopmental disease and congenital anomalies. It has aided in discovering new CNV syndromes and uncovering disease genes. It has discovered CNVs that are not fully penetrant and/or cause a spectrum of phenotypes, including intellectual disability, autism, schizophrenia, and dysmorphisms. Such CNVs can pose challenges to genetic counseling. They also have helped increase knowledge of genetic risk factors for neurodevelopmental disease and raised awareness of possible shared etiologies among these variable phenotypes. Advances in CMA technology allow CNV identification at increasingly finer scales, improving detection of pathogenic changes, although these sometimes are difficult to distinguish from normal population variation. This paper confronts some of the challenges uncovered by CMA testing while reviewing advances in genetics and the clinical use of this test that has replaced standard karyotyping in most genetic evaluations.
-
References
- 1 Gardner RJM, Sutherland GR, Shaffer LG. Chromosome Abnormalities and Genetic Counseling. Oxford; New York: Oxford University Press; 2012
- 2 Riegel M. Human molecular cytogenetics: From cells to nucleotides. Genet Mol Biol 2014; 37 (1, Suppl): 194-209
- 3 Tjio JH, Levan A. The chromosome number of man. Hereditas 1956; 42: 1-6
- 4 Shaffer LG, Bejjani BA. A cytogeneticist's perspective on genomic microarrays. Hum Reprod Update 2004; 10 (03) 221-226
- 5 Cooper GM, Coe BP, Girirajan S. , et al. A copy number variation morbidity map of developmental delay. Nat Genet 2011; 43 (09) 838-846
- 6 Kaminsky EB, Kaul V, Paschall J. , et al. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet Med 2011; 13 (09) 777-784
- 7 Coe BP, Witherspoon K, Rosenfeld JA. , et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet 2014; 46 (10) 1063-1071
- 8 Geng J, Picker J, Zheng Z. , et al. Chromosome microarray testing for patients with congenital heart defects reveals novel disease causing loci and high diagnostic yield. BMC Genomics 2014; 15: 1127
- 9 Stark Z, Behrsin J, Burgess T. , et al. SNP microarray abnormalities in a cohort of 28 infants with congenital diaphragmatic hernia. Am J Med Genet A 2015; 167A (10) 2319-2326
- 10 Shoukier M, Klein N, Auber B. , et al. Array CGH in patients with developmental delay or intellectual disability: are there phenotypic clues to pathogenic copy number variants?. Clin Genet 2013; 83 (01) 53-65
- 11 Miller DT, Adam MP, Aradhya S. , et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010; 86 (05) 749-764
- 12 Roberts JL, Hovanes K, Dasouki M, Manzardo AM, Butler MG. Chromosomal microarray analysis of consecutive individuals with autism spectrum disorders or learning disability presenting for genetic services. Gene 2014; 535 (01) 70-78
- 13 Battaglia A, Doccini V, Bernardini L. , et al. Confirmation of chromosomal microarray as a first-tier clinical diagnostic test for individuals with developmental delay, intellectual disability, autism spectrum disorders and dysmorphic features. Eur J Paediatr Neurol 2013; 17 (06) 589-599
- 14 Hochstenbach R, van Binsbergen E, Engelen J. , et al. Array analysis and karyotyping: workflow consequences based on a retrospective study of 36,325 patients with idiopathic developmental delay in the Netherlands. Eur J Med Genet 2009; 52 (04) 161-169
- 15 Gazzellone MJ, Zhou X, Lionel AC. , et al. Copy number variation in Han Chinese individuals with autism spectrum disorder. J Neurodev Disord 2014; 6 (01) 34
- 16 Eriksson MA, Liedén A, Westerlund J. , et al. Rare copy number variants are common in young children with autism spectrum disorder. Acta Paediatr 2015; 104 (06) 610-618
- 17 Girirajan S, Dennis MY, Baker C. , et al. Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder. Am J Hum Genet 2013; 92 (02) 221-237
- 18 Sebat J, Lakshmi B, Malhotra D. , et al. Strong association of de novo copy number mutations with autism. Science 2007; 316 (5823): 445-449
- 19 Mefford HC. CNVs in Epilepsy. Curr Genet Med Rep 2014; 2: 162-167
- 20 Olson H, Shen Y, Avallone J. , et al. Copy number variation plays an important role in clinical epilepsy. Ann Neurol 2014; 75 (06) 943-958
- 21 Guilmatre A, Dubourg C, Mosca AL. , et al. Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation. Arch Gen Psychiatry 2009; 66 (09) 947-956
- 22 International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455 (7210): 237-241
- 23 Kirov G, Grozeva D, Norton N. , et al; International Schizophrenia Consortium; Wellcome Trust Case Control Consortium. Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. Hum Mol Genet 2009; 18 (08) 1497-1503
- 24 Stefansson H, Rujescu D, Cichon S. , et al; GROUP. Large recurrent microdeletions associated with schizophrenia. Nature 2008; 455 (7210): 232-236
- 25 Walsh T, McClellan JM, McCarthy SE. , et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320 (5875): 539-543
- 26 Green EK, Rees E, Walters JT. , et al. Copy number variation in bipolar disorder. Mol Psychiatry 2016; 21 (01) 89-93
- 27 Noor A, Lionel AC, Cohen-Woods S. , et al. Copy number variant study of bipolar disorder in Canadian and UK populations implicates synaptic genes. Am J Med Genet B Neuropsychiatr Genet 2014; 165B (04) 303-313
- 28 Elia J, Gai X, Xie HM. , et al. Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Mol Psychiatry 2010; 15 (06) 637-646
- 29 Lionel AC, Crosbie J, Barbosa N. , et al. Rare copy number variation discovery and cross-disorder comparisons identify risk genes for ADHD. Sci Transl Med 2011; 3 (95) 95ra75
- 30 Segel R, Ben-Pazi H, Zeligson S. , et al. Copy number variations in cryptogenic cerebral palsy. Neurology 2015; 84 (16) 1660-1668
- 31 Manning M, Hudgins L. ; Professional Practice and Guidelines Committee. Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet Med 2010; 12 (11) 742-745
- 32 Moeschler JB, Shevell M. ; Committee on Genetics. Comprehensive evaluation of the child with intellectual disability or global developmental delays. Pediatrics 2014; 134 (03) e903-e918
- 33 Ellison JW, Ravnan JB, Rosenfeld JA. , et al. Clinical utility of chromosomal microarray analysis. Pediatrics 2012; 130 (05) e1085-e1095
- 34 Riggs ER, Wain KE, Riethmaier D. , et al. Chromosomal microarray impacts clinical management. Clin Genet 2014; 85 (02) 147-153
- 35 Pfundt R, Kwiatkowski K, Roter A. , et al. Clinical performance of the CytoScan Dx Assay in diagnosing developmental delay/intellectual disability. Genet Med 2016; 18 (02) 168-173
- 36 Hayeems RZ, Hoang N, Chenier S. , et al. Capturing the clinical utility of genomic testing: medical recommendations following pediatric microarray. Eur J Hum Genet 2015; 23 (09) 1135-1141
- 37 Coulter ME, Miller DT, Harris DJ. , et al. Chromosomal microarray testing influences medical management. Genet Med 2011; 13 (09) 770-776
- 38 Henderson LB, Applegate CD, Wohler E, Sheridan MB, Hoover-Fong J, Batista DA. The impact of chromosomal microarray on clinical management: a retrospective analysis. Genet Med 2014; 16 (09) 657-664
- 39 Sun F, Oristaglio J, Levy SE. , et al. Genetic Testing for Developmental Disabilities, Intellectual Disability, and Autism Spectrum Disorder. Rockville, MD: Agency for Healthcare Research and Quality (US); 2015
- 40 Trevathan E. So what? Does the test lead to improved health outcomes?. Neurology 2011; 77 (17) 1586-1587
- 41 Vassos E, Collier DA, Holden S. , et al. Penetrance for copy number variants associated with schizophrenia. Hum Mol Genet 2010; 19 (17) 3477-3481
- 42 Watson CT, Marques-Bonet T, Sharp AJ, Mefford HC. The genetics of microdeletion and microduplication syndromes: an update. Annu Rev Genomics Hum Genet 2014; 15: 215-244
- 43 Schaaf CP, Wiszniewska J, Beaudet AL. Copy number and SNP arrays in clinical diagnostics. Annu Rev Genomics Hum Genet 2011; 12: 25-51
- 44 Bruno DL, White SM, Ganesamoorthy D. , et al. Pathogenic aberrations revealed exclusively by single nucleotide polymorphism (SNP) genotyping data in 5000 samples tested by molecular karyotyping. J Med Genet 2011; 48 (12) 831-839
- 45 de la Chapelle A, Herva R, Koivisto M, Aula P. A deletion in chromosome 22 can cause DiGeorge syndrome. Hum Genet 1981; 57 (03) 253-256
- 46 Kelley RI, Zackai EH, Emanuel BS, Kistenmacher M, Greenberg F, Punnett HH. The association of the DiGeorge anomalad with partial monosomy of chromosome 22. J Pediatr 1982; 101 (02) 197-200
- 47 Ewart AK, Morris CA, Atkinson D. , et al. Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nat Genet 1993; 5 (01) 11-16
- 48 Kobrynski LJ, Sullivan KE. Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes. Lancet 2007; 370 (9596): 1443-1452
- 49 McDonald-McGinn DM, Tonnesen MK, Laufer-Cahana A. , et al. Phenotype of the 22q11.2 deletion in individuals identified through an affected relative: cast a wide FISHing net!. Genet Med 2001; 3 (01) 23-29
- 50 Koolen DA, Vissers LE, Pfundt R. , et al. A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nat Genet 2006; 38 (09) 999-1001
- 51 Sharp AJ, Hansen S, Selzer RR. , et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat Genet 2006; 38 (09) 1038-1042
- 52 Grisart B, Willatt L, Destrée A. , et al. 17q21.31 microduplication patients are characterised by behavioural problems and poor social interaction. J Med Genet 2009; 46 (08) 524-530
- 53 Ballif BC, Theisen A, Rosenfeld JA. , et al. Identification of a recurrent microdeletion at 17q23.1q23.2 flanked by segmental duplications associated with heart defects and limb abnormalities. Am J Hum Genet 2010; 86 (03) 454-461
- 54 Shuvarikov A, Campbell IM, Dittwald P. , et al. Recurrent HERV-H-mediated 3q13.2-q13.31 deletions cause a syndrome of hypotonia and motor, language, and cognitive delays. Hum Mutat 2013; 34 (10) 1415-1423
- 55 Ballif BC, Rosenfeld JA, Traylor R. , et al. High-resolution array CGH defines critical regions and candidate genes for microcephaly, abnormalities of the corpus callosum, and seizure phenotypes in patients with microdeletions of 1q43q44. Hum Genet 2012; 131 (01) 145-156
- 56 van Bon BW, Koolen DA, Borgatti R. , et al. Clinical and molecular characteristics of 1qter microdeletion syndrome: delineating a critical region for corpus callosum agenesis/hypogenesis. J Med Genet 2008; 45 (06) 346-354
- 57 Shaffer LG, Theisen A, Bejjani BA. , et al. The discovery of microdeletion syndromes in the post-genomic era: review of the methodology and characterization of a new 1q41q42 microdeletion syndrome. Genet Med 2007; 9 (09) 607-616
- 58 Rosenfeld JA, Lacassie Y, El-Khechen D. , et al. New cases and refinement of the critical region in the 1q41q42 microdeletion syndrome. Eur J Med Genet 2011; 54 (01) 42-49
- 59 Au PY, Argiropoulos B, Parboosingh JS, Micheil Innes A. Refinement of the critical region of 1q41q42 microdeletion syndrome identifies FBXO28 as a candidate causative gene for intellectual disability and seizures. Am J Med Genet A 2014; 164A (02) 441-448
- 60 Burkardt DD, Rosenfeld JA, Helgeson ML. , et al. Distinctive phenotype in 9 patients with deletion of chromosome 1q24-q25. Am J Med Genet A 2011; 155A (06) 1336-1351
- 61 Chatron N, Haddad V, Andrieux J. , et al. Refinement of genotype-phenotype correlation in 18 patients carrying a 1q24q25 deletion. Am J Med Genet A 2015; 167A (05) 1008-1017
- 62 Mefford HC, Sharp AJ, Baker C. , et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med 2008; 359 (16) 1685-1699
- 63 Brunetti-Pierri N, Berg JS, Scaglia F. , et al. Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat Genet 2008; 40 (12) 1466-1471
- 64 Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 2012; 148 (06) 1223-1241
- 65 Girirajan S, Rosenfeld JA, Coe BP. , et al. Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N Engl J Med 2012; 367 (14) 1321-1331
- 66 Albers CA, Paul DS, Schulze H. , et al. Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nat Genet 2012; 44 (04) 435-439 , S1–S2
- 67 Wu N, Ming X, Xiao J. , et al. TBX6 null variants and a common hypomorphic allele in congenital scoliosis. N Engl J Med 2015; 372 (04) 341-350
- 68 Rosenfeld JA, Coe BP, Eichler EE, Cuckle H, Shaffer LG. Estimates of penetrance for recurrent pathogenic copy-number variations. Genet Med 2013; 15 (06) 478-481
- 69 Kirov G, Rees E, Walters JT. , et al. The penetrance of copy number variations for schizophrenia and developmental delay. Biol Psychiatry 2014; 75 (05) 378-385
- 70 Jacquemont S, Coe BP, Hersch M. , et al. A higher mutational burden in females supports a “female protective model” in neurodevelopmental disorders. Am J Hum Genet 2014; 94 (03) 415-425
- 71 Polyak A, Rosenfeld JA, Girirajan S. An assessment of sex bias in neurodevelopmental disorders. Genome Med 2015; 7 (01) 94
- 72 Stefansson H, Meyer-Lindenberg A, Steinberg S. , et al. CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature 2014; 505 (7483): 361-366
- 73 Männik K, Mägi R, Macé A. , et al. Copy number variations and cognitive phenotypes in unselected populations. JAMA 2015; 313 (20) 2044-2054
- 74 Morrow EM. Genomic copy number variation in disorders of cognitive development. J Am Acad Child Adolesc Psychiatry 2010; 49 (11) 1091-1104
- 75 Girirajan S, Campbell CD, Eichler EE. Human copy number variation and complex genetic disease. Annu Rev Genet 2011; 45: 203-226
- 76 Moreno-De-Luca A, Evans DW, Boomer KB. , et al. The role of parental cognitive, behavioral, and motor profiles in clinical variability in individuals with chromosome 16p11.2 deletions. JAMA Psychiatry 2015; 72 (02) 119-126
- 77 Moreno-De-Luca A, Myers SM, Challman TD, Moreno-De-Luca D, Evans DW, Ledbetter DH. Developmental brain dysfunction: revival and expansion of old concepts based on new genetic evidence. Lancet Neurol 2013; 12 (04) 406-414
- 78 Rosenfeld JA, Ballif BC, Lucas A. , et al. Small deletions of SATB2 cause some of the clinical features of the 2q33.1 microdeletion syndrome. PLoS ONE 2009; 4 (08) e6568
- 79 Talkowski ME, Mullegama SV, Rosenfeld JA. , et al. Assessment of 2q23.1 microdeletion syndrome implicates MBD5 as a single causal locus of intellectual disability, epilepsy, and autism spectrum disorder. Am J Hum Genet 2011; 89 (04) 551-563
- 80 Mullegama SV, Rosenfeld JA, Orellana C. , et al. Reciprocal deletion and duplication at 2q23.1 indicates a role for MBD5 in autism spectrum disorder. Eur J Hum Genet 2014; 22 (01) 57-63
- 81 Hodge JC, Mitchell E, Pillalamarri V. , et al. Disruption of MBD5 contributes to a spectrum of psychopathology and neurodevelopmental abnormalities. Mol Psychiatry 2014; 19 (03) 368-379
- 82 Paciorkowski AR, Traylor RN, Rosenfeld JA. , et al. MEF2C Haploinsufficiency features consistent hyperkinesis, variable epilepsy, and has a role in dorsal and ventral neuronal developmental pathways. Neurogenetics 2013; 14 (02) 99-111
- 83 Le Meur N, Holder-Espinasse M, Jaillard S. , et al. MEF2C haploinsufficiency caused by either microdeletion of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic movements, epilepsy and/or cerebral malformations. J Med Genet 2010; 47 (01) 22-29
- 84 Lamb AN, Rosenfeld JA, Neill NJ. , et al. Haploinsufficiency of SOX5 at 12p12.1 is associated with developmental delays with prominent language delay, behavior problems, and mild dysmorphic features. Hum Mutat 2012; 33 (04) 728-740
- 85 Schanze I, Schanze D, Bacino CA, Douzgou S, Kerr B, Zenker M. Haploinsufficiency of SOX5, a member of the SOX (SRY-related HMG-box) family of transcription factors is a cause of intellectual disability. Eur J Med Genet 2013; 56 (02) 108-113
- 86 Rao A, O'Donnell S, Bain N, Meldrum C, Shorter D, Goel H. An intragenic deletion of the NFIA gene in a patient with a hypoplastic corpus callosum, craniofacial abnormalities and urinary tract defects. Eur J Med Genet 2014; 57 (02/03) 65-70
- 87 Klopocki E, Lohan S, Doelken SC. , et al. Duplications of BHLHA9 are associated with ectrodactyly and tibia hemimelia inherited in non-Mendelian fashion. J Med Genet 2012; 49 (02) 119-125
- 88 Duker AL, Ballif BC, Bawle EV. , et al. Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur J Hum Genet 2010; 18 (11) 1196-1201
- 89 Sahoo T, del Gaudio D, German JR. , et al. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet 2008; 40 (06) 719-721
- 90 Bieth E, Eddiry S, Gaston V. , et al. Highly restricted deletion of the SNORD116 region is implicated in Prader-Willi Syndrome. Eur J Hum Genet 2015; 23 (02) 252-255
- 91 Anderlid BM, Lundin J, Malmgren H, Lehtihet M, Nordgren A. Small mosaic deletion encompassing the snoRNAs and SNURF-SNRPN results in an atypical Prader-Willi syndrome phenotype. Am J Med Genet A 2014; 164A (02) 425-431
- 92 Koolen DA, Kramer JM, Neveling K. , et al. Mutations in the chromatin modifier gene KANSL1 cause the 17q21.31 microdeletion syndrome. Nat Genet 2012; 44 (06) 639-641
- 93 Zollino M, Orteschi D, Murdolo M. , et al. Mutations in KANSL1 cause the 17q21.31 microdeletion syndrome phenotype. Nat Genet 2012; 44 (06) 636-638
- 94 Kuechler A, Zink AM, Wieland T. , et al. Loss-of-function variants of SETD5 cause intellectual disability and the core phenotype of microdeletion 3p25.3 syndrome. Eur J Hum Genet 2015; 23 (06) 753-760
- 95 Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 1988; 2 (01) 90-95
- 96 Schaaf CP, Boone PM, Sampath S. , et al. Phenotypic spectrum and genotype-phenotype correlations of NRXN1 exon deletions. Eur J Hum Genet 2012; 20 (12) 1240-1247
- 97 Dabell MP, Rosenfeld JA, Bader P. , et al. Investigation of NRXN1 deletions: clinical and molecular characterization. Am J Med Genet A 2013; 161A (04) 717-731
- 98 Beunders G, Voorhoeve E, Golzio C. , et al. Exonic deletions in AUTS2 cause a syndromic form of intellectual disability and suggest a critical role for the C terminus. Am J Hum Genet 2013; 92 (02) 210-220
- 99 Tanteles GA, Alexandrou A, Evangelidou P, Gavatha M, Anastasiadou V, Sismani C. Partial MEF2C deletion in a Cypriot patient with severe intellectual disability and a jugular fossa malformation: review of the literature. Am J Med Genet A 2015; 167A (03) 664-669
- 100 Thevenon J, Lopez E, Keren B. , et al. Intragenic CAMTA1 rearrangements cause non-progressive congenital ataxia with or without intellectual disability. J Med Genet 2012; 49 (06) 400-408
- 101 Baptista J, Mercer C, Prigmore E. , et al. Breakpoint mapping and array CGH in translocations: comparison of a phenotypically normal and an abnormal cohort. Am J Hum Genet 2008; 82 (04) 927-936
- 102 Schluth-Bolard C, Delobel B, Sanlaville D. , et al. Cryptic genomic imbalances in de novo and inherited apparently balanced chromosomal rearrangements: array CGH study of 47 unrelated cases. Eur J Med Genet 2009; 52 (05) 291-296
- 103 Gijsbers AC, Bosch CA, Dauwerse JG. , et al. Additional cryptic CNVs in mentally retarded patients with apparently balanced karyotypes. Eur J Med Genet 2010; 53 (05) 227-233
- 104 Sanmann JN, Pickering DL, Golden DM. , et al. Assessing the utility of confirmatory studies following identification of large-scale genomic imbalances by microarray. Genet Med 2015; 17 (11) 875-879
- 105 Neill NJ, Ballif BC, Lamb AN. , et al. Recurrence, submicroscopic complexity, and potential clinical relevance of copy gains detected by array CGH that are shown to be unbalanced insertions by FISH. Genome Res 2011; 21 (04) 535-544
- 106 Mullen SA, Carvill GL, Bellows S. , et al. Copy number variants are frequent in genetic generalized epilepsy with intellectual disability. Neurology 2013; 81 (17) 1507-1514
- 107 Hrabik SA, Standridge SM, Greiner HM. , et al. The Clinical Utility of a Single-Nucleotide Polymorphism Microarray in Patients With Epilepsy at a Tertiary Medical Center. J Child Neurol 2015; 30 (13) 1770-1777
- 108 Al-Mamari W, Al-Saegh A, Al-Kindy A, Bruwer Z, Al-Murshedi F, Al-Thihli K. Diagnostic Yield of Chromosomal Microarray Analysis in a Cohort of Patients with Autism Spectrum Disorders from a Highly Consanguineous Population. J Autism Dev Disord 2015; 45 (08) 2323-2328
- 109 Wiszniewska J, Bi W, Shaw C. , et al. Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur J Hum Genet 2014; 22 (01) 79-87
- 110 Vallespín E, Palomares Bralo M, Mori MA. , et al. Customized high resolution CGH-array for clinical diagnosis reveals additional genomic imbalances in previous well-defined pathological samples. Am J Med Genet A 2013; 161A (08) 1950-1960
- 111 Tayeh MK, Chin EL, Miller VR, Bean LJ, Coffee B, Hegde M. Targeted comparative genomic hybridization array for the detection of single- and multiexon gene deletions and duplications. Genet Med 2009; 11 (04) 232-240
- 112 Tucker T, Zahir FR, Griffith M. , et al. Single exon-resolution targeted chromosomal microarray analysis of known and candidate intellectual disability genes. Eur J Hum Genet 2014; 22 (06) 792-800
- 113 Wiśniowiecka-Kowalnik B, Kastory-Bronowska M, Bartnik M. , et al. Application of custom-designed oligonucleotide array CGH in 145 patients with autistic spectrum disorders. Eur J Hum Genet 2013; 21 (06) 620-625
- 114 Boone PM, Bacino CA, Shaw CA. , et al. Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat 2010; 31 (12) 1326-1342
- 115 Bruno DL, Stark Z, Amor DJ. , et al. Extending the scope of diagnostic chromosome analysis: detection of single gene defects using high-resolution SNP microarrays. Hum Mutat 2011; 32 (12) 1500-1506
- 116 Vulto-van Silfhout AT, Hehir-Kwa JY, van Bon BW. , et al. Clinical significance of de novo and inherited copy-number variation. Hum Mutat 2013; 34 (12) 1679-1687
- 117 Wain KE, Riggs E, Hanson K. , et al. The laboratory-clinician team: a professional call to action to improve communication and collaboration for optimal patient care in chromosomal microarray testing. J Genet Couns 2012; 21 (05) 631-637
- 118 Reiff M, Giarelli E, Bernhardt BA. , et al. Parents' perceptions of the usefulness of chromosomal microarray analysis for children with autism spectrum disorders. J Autism Dev Disord 2015; 45 (10) 3262-3275
- 119 Heald B, Moran R, Milas M, Burke C, Eng C. Familial adenomatous polyposis in a patient with unexplained mental retardation. Nat Clin Pract Neurol 2007; 3 (12) 694-700
- 120 Campbell IM, Yuan B, Robberecht C. , et al. Parental somatic mosaicism is underrecognized and influences recurrence risk of genomic disorders. Am J Hum Genet 2014; 95 (02) 173-182
- 121 Cubells JF, Deoreo EH, Harvey PD. , et al. Pharmaco-genetically guided treatment of recurrent rage outbursts in an adult male with 15q13.3 deletion syndrome. Am J Med Genet A 2011; 155A (04) 805-810
- 122 Serret S, Thümmler S, Dor E, Vesperini S, Santos A, Askenazy F. Lithium as a rescue therapy for regression and catatonia features in two SHANK3 patients with autism spectrum disorder: case reports. BMC Psychiatry 2015; 15: 107
- 123 Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies. Mol Cell 2015; 58 (04) 586-597
- 124 Hehir-Kwa JY, Pfundt R, Veltman JA. Exome sequencing and whole genome sequencing for the detection of copy number variation. Expert Rev Mol Diagn 2015; 15 (08) 1023-1032
- 125 Talkowski ME, Ernst C, Heilbut A. , et al. Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research. Am J Hum Genet 2011; 88 (04) 469-481