Subscribe to RSS
DOI: 10.1055/s-0036-1588104
Synthesis of Panal Terpenoid Core
Publication History
Received: 02 September 2016
Accepted after revision: 02 November 2016
Publication Date:
17 November 2016 (online)
Abstract
Panal is a natural bicyclic cadalane-type sesquiterpenoid with an unusual combination of stereocenters. It was isolated in 1988 as an alleged biosynthetic precursor of luciferin (a light-emitting molecule) in a bioluminescent fungus Panellus stipticus. Herein we present the first approach to the synthesis of the terpenoid skeleton of panal, which includes construction of five stereocenters, one of which is easily epimerizable. The key steps in the synthetic approach presented are high-pressure Diels–Alder reaction disobeying the ‘endo rule’, Barbier reductive allylation, and cyclization of trans-decalin ring via ring-closing metathesis.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588104.
- Supporting Information
-
References and Notes
- 1 Nakamura H, Kishi Y, Shimomura O. Tetrahedron 1988; 44: 1597
- 2a Shimomura O. Photochem. Photobiol. 1989; 49: 355
- 2b Shimomura O, Satoh S, Kishi Y. J. Biolumin. Chemilumin. 1993; 8: 201
-
3 Fraga BM. Nat. Prod. Rep. 2013; 30: 1226
- 4a Li G.-H, Duan M, Yu Z.-F, Li L, Dong J.-Y, Wang X.-B, Guo J.-W, Huang R, Wang M, Zhang K.-Q. Phytochemistry 2008; 69: 1439
- 4b Hiramatsu F, Murayama T, Koseki T, Funakoshi T, Shiono Y. Nat. Prod. Res. 2011; 25: 781
- 4c Zheng X, Li GH, Xie MJ, Wang X, Sun R, Lu H, Zhang KQ. Phytochemistry 2013; 86: 144
- 4d Clericuzio M, Negri R, Cossi M, Gilardoni G, Gozzini D, Vidari G. Phytochemistry 2013; 93: 192
- 4e Bunyapaiboonsri T, Yoiprommarat S, Nopgason R, Komwijit S, Veeranondha S, Puyngain P, Boonpratuang T. Phytochemistry 2014; 105: 123
- 4f Wei H, Xu YM, Espinosa-Artiles P, Liu MX, Luo JG, U’Ren JM, Elizabeth Arnold A, Leslie Gunatilaka AA. Phytochemistry 2015; 118: 102
- 5a Ji N.-Y, Song Y.-P, Miao F.-P, Liang X.-R. Magn. Reson. Chem. 2016; 54: 88
- 5b Qiao Y.-Y, Ji N.-Y, Wen W, Yin X.-L, Xue Q.-Z. Mar. Drugs 2009; 7: 600
- 6a Egas V, Toscano RA, Linares E, Bye R, Espinosa-García FJ, Delgado G. J. Nat. Prod. 2015; 78: 2634
- 6b He L, Hou J, Gan M, Shi J, Chantrapromma S, Fun HK, Williams ID, Sung HH. Y. J. Nat. Prod. 2008; 71: 1485
- 6c Ma J, Wang Y, Liu Y, Gao S, Ding L, Zhao F, Chen L, Qiu F. Fitoterapia 2015; 103: 90
- 6d Li D, Jiang Y.-Y, Jin Z.-M, Li H.-Y, Xie H.-J, Wu B, Wang K.-W. Phytochemistry 2016; 122: 294
- 6e Xie XY, Wang R, Shi YP. Planta Med. 2012; 78: 1010
- 6f Xu J, Guo Y, Li Y, Zhao P, Liu C, Ma Y, Gao J, Hou W, Zhang T. Planta Med. 2011; 77: 2023
- 7a Rahelivao MP, Gruner M, Lübken T, Islamov D, Kataeva O, Andriamanantoanina H, Bauer I, Knölker H.-J. Org. Biomol. Chem. 2016; 14: 989
- 7b Roy PK, Ashimine R, Miyazato H, Taira J, Ueda K. Arch. Pharm. Res. 2016; 39: 778
- 7c Su J.-H, Huang C.-Y, Li P.-J, Lu Y, Wen Z.-H, Kao Y.-H, Sheu J.-H. Arch. Pharm. Res. 2012; 35: 779
- 8a Harada H, Morie T, Hirokawa Y, Kato S. Chem. Pharm. Bull. (Tokyo) 1996; 44: 2205
- 8b Castro MÁ, Miguel Del Corral JM, García PA, Rojo MV, De La Iglesia-Vicente J, Mollinedo F, Cuevas C, San Feliciano A. J. Med. Chem. 2010; 53: 983
- 9a Heapy AM, Brimble MA. Tetrahedron 2010; 66: 5424
- 9b Drzewinski W, Dabrowski R, Czuprynski K. Pol. J. Chem. 2002; 76: 273
- 9c Mondal S, Mohamed RK, Manoharan M, Phan H, Alabugin IV. Org. Lett. 2013; 15: 5650
- 10a Dubois J, Fourès C, Bory S, Falcou S, Gaudry M, Marquet A. Tetrahedron 1991; 47: 1001
- 10b Guzaev A, Lonnberg H. Synthesis 1997; 1281
- 10c Iwata C, Maezaki N, Hattori K, Fujita M, Moritani Y, Takemoto Y, Tanaka T, Imanishi T. Chem. Pharm. Bull. (Tokyo) 1993; 41: 339
- 10d Lange K, Schneider MP. Tetrahedron: Asymmetry 2004; 15: 2811
- 11 Ireland RE, Wipf P, Armstrong JD. J. Org. Chem. 1991; 56: 650
- 12 Xie L, Isenberger KM, Held G, Dahl LM. J. Org. Chem. 1997; 62: 7516
- 13 General Procedure for Silylation HMPA (300 mL) was mixed with THF (150 mL) under inert atmosphere. The mixture was cooled to –78 °C, and the solution of LiHMDS (1 M in THF, 60 mL, 60 mmol) was added. The solution of ketone (9.9 g, 50 mmol) in THF (75 mL) was added dropwise, and the mixture was stirred for 30 min. The solution of chlorosilane (55 mmol) in THF (35 mL) was added slowly, and the mixture was stirred for 1 h at –78 °C and gently warmed to the r.t. (1–2 h). The mixture was dissolved in hexane (1000 mL), washed with brine (3 × 100 mL), and dried over sat. Na2SO4. The solvents were evaporated, and the product was purified by column chromatography (EtOAc–hexane, 1:10). Representative Analytical Data tert-Butyl{[(1Z,3E)-1-(2,2-dimethyl-1,3-dioxan-5-yl)penta-1,3-dien-2-yl]oxy}diphenylsilane (IVa) White solid, mp 96–98 °С, yield: 14.1 g (64%). ESI-HRMS: m/z calcd for C27H37O3Si+ [M + H]+: 437.2512; found: 437.2495. 1H NMR (700 MHz, CDCl3): δ = 7.73 (4 H, d, J = 8.1 Hz), 7.44 (1 H, t, J = 7.1 Hz), 7.39 (1 H, t, J = 7.2 Hz), 5.89 (1 H, dq, J = 15.2, 6.8 Hz), 5.70 (1 H, dq, J = 15.2, 1.5 Hz), 4.50 (1 H, d, J = 10.0 Hz), 3.40 (2 H, dd, J = 4.7, 11.5 Hz), 3.27 (2 H, dd, J = 11.5, 8.1 Hz), 2.718–2.67 (1 H, m), 1.57 (3 H, dd, J = 6.8, 1.5 Hz), 1.35 (3 H, s), 1.27 (3 H, s), 1.08 (9 H, s). 13C NMR (176 MHz, CDCl3): δ = 17.6 (CH3), 19.8, 21.7, 26.1, 26.7 (3 × CH3), 32.3, 63.8, 97.2, 106.3, 126.3, 127.6, 129.5, 129.8, 133.3, 135.3, 150.3. tert-Butyl{[(1Z,3E)-1-(2,2-dimethyl-1,3-dioxan-5-yl)penta-1,3-dien-2-yl]oxy}dimethylsilane (IVb) Colorless liquid, yield: 13.6 g (87%). ESI-HRMS: m/z calcd for C17H33O3Si+ [M + H]+: 313.2199; found: 313.2188. 1H NMR (700 MHz, CDCl3): δ = 5.85–5.81 (2 H, m), 4.41 (1 H, d, J = 9.6 Hz), 3.80 (2 H, dd, J = 4.9, 12.0 Hz), 3.59 (2 H, dd, J = 11.1, 11.5 Hz), 2.98–2.92 (1 H, m), 1.75 (3 H, d, J = 4.9 Hz), 1.45 (3 H, s), 1.41 (3 H, s), 1.01 (9 H, s), 0.13 (6 H, s). 13C NMR (176 MHz, CDCl3): δ = –4.7, 17.5, 19.2, 21.1, 25.9, 27.8, 32.4, 63.9, 64.1, 97.3, 107.4, 125.8, 129.5, 150.5.
- 14 CCDC 1492233 (IVa) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 15 Fringuelli F, Taticchi A. The Diels–Alder Reaction: Selected Practical Methods . John Wiley and Sons; Chichester: 2002
- 16 General Procedure for the Diels–Alder Reaction The mixture of alkene (24.6 g, 100 mmol), diene (105 mmol), and ionol (2,6-di-tert-butyl-4-methylphenol; 1 g, 4.5 mmol) was dissolved in 50 mL of dry CH2Cl2 and degassed upon freezing. The mixture was heated in an autoclave to 100 °C under high pressure (1 GPa) for 1 week. The solvent was evaporated, and the product was purified by column chromatography (EtOAc–hexane, 1:4). Representative Analytical Data (1S,2S,5R,6R)-Ethyl 6-[2-(Benzyloxy)ethyl]-4-[(tert-butyldiphenylsilyl)oxy]-5-(2,2-dimethyl-1,3-dioxan-5-yl)-2-methylcyclohex-3-enecarboxylate (6a) Colorless liquid, yield: 37.7 g (55%). ESI-HRMS: m/z calcd for C41H55O6Si+ [M + H]+: 671.3768; found: 671.3761. 1H NMR (700 MHz, CDCl3): δ = 7.67 (2 H, d, J = 6.6 Hz), 7.57 (2 H, d, J = 6.8 Hz), 7.39–7.20 (11 H, m), 4.48 (1 H, d, J = 11.3 Hz), 4.37 (1 H, d, J = 11.3 Hz), 4.36 (1 H, br s), 4.08–4.00 (4 H, m), 3.71 (1 H, dd, J = 11.3, 3.2 Hz), 3.56 (1 H, dd, J = 11.3, 3.0 Hz), 3.31 (2 H, br t, J = 7.3 Hz), 2.21–2.18 (1 H, m), 2.03–2.01 (1 H, m), 2.00–1.93 (1 H, m), 1.86 (1 H, dd, J = 11.5, 10.3 Hz), 1.82–1.78 (1 H, m), 1.68–1.63 (1 H, m), 1.55–1.51 (1 H, m), 1.40 (3 H, s), 1.34 (3 H, s), 1.17 (3 H, t, J = 7.3 Hz), 1.00 (9 H, s), 0.62 (3 H, d, J = 6.8 Hz). 13C NMR (176 MHz, CDCl3): δ = 14.3, 18.8, 19.2, 20.3, 26.7, 29.5, 29.7, 32.3, 33.6, 38.6, 40.0, 50.6, 60.3, 64.6, 65.8, 68.0, 73.0, 97.7, 111.2, 127.5, 127.6, 127.7, 127.8, 128.9, 129.8, 129.9, 132.0, 133.5, 135.4, 138.2, 148.8, 175.4. (1S,2S,5R,6R)-Ethyl 6-[2-(Benzyloxy)ethyl]-4-[(tert-butyldimethylsilyl)oxy]-5-(2,2-dimethyl-1,3-dioxan-5-yl)-2-methylcyclohex-3-enecarboxylate (6b) Colorless solid, mp 67–69 °С, yield: 25.3 g (45%). ESI-HRMS: m/z calcd for C31H50NaO6Si+ [M + Na]+: 569.3274; found: 569.3271. 1H NMR (700 MHz, CDCl3): δ = 7.36–7.28 (5 H, m), 4.66 (1 H, br s), 4.48 (1 H, d, J = 12.0 Hz), 4.37 (1 H, d, J = 12.0 Hz), 4.18–4.12 (2 H, m), 4.00 (1 H, t, J = 11.5 Hz), 3.90 (1 H, t, J = 11.5 Hz), 3.71 (1 H, br d, J = 11.8 Hz), 3.56 (1 H, br d, J = 11.8 Hz), 3.41 (2 H, br t, J = 6.4 Hz), 2.61–2.58 (1 H, m), 2.20–2.17 (1 H, m), 2.06–2.03 (1 H, m), 1.99 (1 H, dd, J = 11.3, 11.8 Hz), 1.75–1.71 (2 H, m), 1.65–1.62 (1 H, m), 1.45 (3 H, s), 1.39 (3 H, s), 1.27 (3 H, t, J = 7.3 Hz), 0.96 (9 H, s), 0.93 (3 H, d, J = 6.8 Hz), 0.18 (3 H, s), 0.14 (3 H, s). 13C NMR (176 MHz, CDCl3): δ = –4.6, –4.2, 14.3, 17.9, 18.7, 20.7, 25.8, 29.5, 29.7, 31.9, 33.8, 38.4, 40.1, 50.8, 60.4, 64.4, 65.6, 67.9, 73.0, 97.7, 109.2, 127.6, 127.7, 138.3, 149.3, 175.6.
- 17 CCDC 1492234 (6b) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
-
18 Grieco PA, Gilman S, Nishizawa M. J. Org. Chem. 1976; 41: 1485
- 19a Miura K, Wang D, Hosomi A. J. Am. Chem. Soc. 2005; 127: 9366
- 19b Sudhakar G, Reddy KJ, Nanubolu JB. Tetrahedron 2013; 69: 2419
- 20 Vorwerk S, Vasella A. Angew. Chem. Int. Ed. 1998; 37: 1732
- 21 General Procedure for RCM Reaction The alkene (1.77 g, 3 mmol) was dissolved in dry DCE (50 mL), and the Grubbs II catalyst (255 mg, 0.3 mmol) was added under inert atmosphere. The mixture was heated to 80 °C for 8 h, the solvent was evaporated, and the product was purified by column chromatography (EtOAc–hexane, 1:1). Representative Analytical Data (1R,4aR,5S,8S,8aS)-6-[(tert-Butyldiphenylsilyl)oxy]-5-(2,2-dimethyl-1,3-dioxan-5-yl)-3-(hydroxymethyl)-8-methyl-1,2,4a,5,8,8a-hexahydronaphthalen-1-ol (11a) White powder, yield: 540 mg (32%). ESI-HRMS: m/z calcd for C34H47O5Si+ [M + H]+: 563.3193; found: 563.3197. 1H NMR (700 MHz, CDCl3): δ = 7.75 (2 H, d, J = 6.6 Hz), 7.65 (2 H, d, J = 6.6 Hz), 7.46–7.40 (4 H, m), 7.36 (2 H, t, J = 7.5 Hz), 5.49 (1 H, br s), 4.49 (1 H, d, J = 3.0 Hz), 4.16 (1 H, t, J = 11.5 Hz), 4.03 (1 H, t, J = 11.3 Hz), 4.14–4.10 (1 H, m), 4.04–3.96 (2 H, m), 3.76 (1 H, ddd, J = 11.5, 4.9, 1.9 Hz), 3.73 (1 H, ddd, J = 11.3, 4.9, 1.9 Hz), 2.52–2.48 (1 H, m), 2.38 (1 H, br d, J = 11.5 Hz), 2.36–2.31 (1 H, m), 2.27–2.20 (1 H, m), 2.07–2.03 (1 H, m), 2.02–1.96 (1 H, m), 1.92 (1 H, br t, J = 3.3 Hz), 1.86 (1 H, br d, J = 3.5 Hz), 1.47 (3 H, s), 1.39 (3 H, s), 1.08 (9 H, br s), 1.04 (1 H, br t, J = 11.1 Hz), 0.75 (3 H, d, J = 6.8 Hz). 13C NMR (176 MHz, CDCl3): δ = 18.8, 19.2, 19.4, 26.8, 29.5, 30.0, 34.3, 34.6, 36.8, 42.2, 42.5, 64.3, 64.6, 66.0, 66.7, 97.8, 113.2, 124.4, 127.6, 127.6, 129.8, 132.3, 133.5, 135.4, 135.8, 148.7. (1S,4aR,5S,8S,8aS)-6-[(tert-Butyldiphenylsilyl)oxy]-5-(2,2-dimethyl-1,3-dioxan-5-yl)-3-(hydroxymethyl)-8-methyl-1,2,4a,5,8,8a-hexahydronaphthalen-1-ol (11b) White powder, yield: 420 mg (25%). ESI-HRMS: m/z calcd for C34H47O5Si+ [M + H]+: 563.3193; found: 563.3200. 1H NMR (700 MHz, CDCl3): δ = 7.75 (2 H, d, J = 6.7 Hz), 7.65 (2 H, d, J = 6.7 Hz), 7.46–7.41 (4 H, m), 7.36 (2 H, t, J = 7.5 Hz), 5.35 (1 H, br s), 4.42 (1 H, d, J = 3.1 Hz), 4.11 (1 H, t, J = 11.6 Hz), 4.04 (1 H, t, J = 11.6 Hz), 4.06–3.97 (2 H, m), 3.85 (1 H, ddd, J = 11.6, 4.9, 2.0 Hz), 3.74 (1 H, ddd, J = 11.4, 5.1, 1.8 Hz), 3.64–3.58 (1 H, m), 2.38 (1 H, br dd, J = 16.7, 4.4 Hz), 2.25–2.19 (1 H, m), 2.12–2.05 (1 H, m), 2.05–2.01 (1 H, m), 2.00–1.96 (2 H, m), 1.85 (1 H, br t, J = 3.5 Hz), 1.70 (1 H, br d, J = 3.8 Hz), 1.49 (3 H, s), 1.40 (3 H, s), 1.17 (1 H, br q, J = 9.5 Hz), 1.07 (9 H, br s), 1.00 (3 H, d, J = 6.7 Hz). 13C NMR (176 MHz, CDCl3): δ = 18.8, 19.1, 23.4, 26.7, 29.4, 33.9, 34.1, 36.9, 42.5, 43.1, 44.9, 64.5, 65.8, 66.0, 74.1, 97.7, 113.8, 124.3, 127.6, 127.7, 129.8, 132.3, 133.5, 135.4, 137.5, 148.8.
- 22a Hooz J, Akiyama S, Cedar FJ, Bennett MJ, Tuggle RM. J. Am. Chem. Soc. 1974; 96: 274
- 22b Chikashita H, Nikaya T, Uemara H, Itoh K. Bull. Chem. Soc. Jpn. 1989; 2121
- 23a Fang L, Bi F, Zhang C, Zheng G, Li Y. Synlett 2006; 2655
- 23b Barriault L, Deon DH. Org. Lett. 2001; 3: 1925
- 23c Tietze LF, Beifuss U, Antel J, Sheldrick GM. Angew. Chem., Int. Ed. Engl. 1988; 27: 703
- 23d Queiroga CL, Ferracini VL, Marsaioli AJ. Phytochemistry 1996; 42: 1097
- 23e Davidson BS, Plavcan KA, Meinwald J. J. Org. Chem. 1990; 55: 3912