Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(04): 770-774
DOI: 10.1055/s-0036-1588324
DOI: 10.1055/s-0036-1588324
paper
4,5-Disubstituted 1-Methylimidazoles via Cyclization of Defined α-Aminoketones: Synthesis of Fungerin and Analogues I
Further Information
Publication History
Received: 20 July 2016
Accepted after revision: 06 September 2016
Publication Date:
23 September 2016 (online)
Abstract
A protocol for the chemoselective synthesis of the fungal metabolite fungerin has been developed. First the required N-methyl α-aminoketone was generated starting from sarcosine, propiolic acid, and prenyl bromide. Marckwald thioimidazole cyclization and subsequent sulfur removal delivered the target fungerin as well as an analogue, respectively, displaying defined substitution patterns.
Key words
imidazole - α-aminoketone - Marckwald synthesis - regioselective synthesis - natural productSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588324.
- Supporting Information
-
References
- 1a Shangguan N, Joullié MM. Tetrahedron Lett. 2009; 50: 6755
- 1b Cho H.-W, Oh C.-H, Lee J.-S, Choi J.-Hu, Choi J.-Hy. Arch. Pharm. (Weinheim) 2003; 336: 495
- 1c Simpson MG, Pittelkow M, Watson SP, Sanders JK. M. Org. Biomol. Chem. 2010; 8: 1181
- 1d Sonegawa M, Yokota M, Tomiyama H, Tomiyama T. Chem. Pharm. Bull. 2006; 54: 706
- 1e Bridson PK, Huang H, Lin X. J. Chem. Soc., Perkin Trans 1 1996; 2257
- 1f Kanoh K, Kohno S, Katada J, Takahashi J, Uno I, Hayashi Y. Bioorg. Med. Chem. 1999; 7: 1451
- 2a Subrayan RP, Thurber EL, Rasmussen PG. Tetrahedron 1994; 50: 2641
- 2b Smalley TL. Jr, Boggs S, Caravella JA, Chen L, Creech KL, Deaton DN, Kaldor I, Parks DJ. Bioorg. Med. Chem. Lett. 2015; 25: 280
- 2c Yasuda N, Nakamura A, Tsuboi M. J. Heterocycl. Chem. 1987; 24: 303
- 2d Lam BL, Wellman GR, Labaw CS. J. Org. Chem. 1982; 47: 144
- 3a Bredereck H, Theilig G. Chem. Ber. 1953; 86: 88
- 3b Kimura T, Watanabe N, Matsui M, Hayashi K, Tanaka H, Ohtsuka I, Saeki T, Kogushi M, Kabayashi H, Akasaka K, Yamagishi Y, Saitou I, Yamatsu I. J. Med. Chem. 1993; 36: 1641
- 3c Review: Bredereck H, Gompper R, Schuh G, Theilig G. Angew. Chem. 1959; 71: 753
- 4a Su Z, Peng L, Melander C. Tetrahedron Lett. 2012; 53: 1204
- 4b Aberle NS, Lessene G, Watson KG. Org. Lett. 2006; 8: 419
- 4c Itoh T, Matsuya Y, Nagata K, Ohsawa A. Chem. Pharm. Bull. 1997; 45: 1547
- 4d Boehm JC, Gleason JG, Pendrak I, Sarau HM, Schmidt DB, Foley JJ, Kingsbury WD. J. Med. Chem. 1993; 36: 3333
- 5a Marckwald W. Ber. Dtsch. Chem. Ges. 1892; 25: 2354
- 5b Gompper R. Chem. Ber. 1956; 89: 1762
- 5c Xi N, Xu S, Cheng Y, Tasker AS, Hungate RW, Reider PJ. Tetrahedron Lett. 2005; 46: 7315
- 5d Laufer SA, Hauser DR. J, Liedke AJ. Synthesis 2008; 253
- 5e Dhawas AK, Thakare T. Indian J. Heterocycl. Chem. 2012; 21: 217
- 6a Visconti A, Solfrizzo M. J. Agric. Food Chem. 1994; 42: 195
- 6b Solfrizzo M, Visconti A. Toxicol. in Vitro 1994; 8: 461
- 6c Visconti A. Solfrizzo, M. Food Addit. Contam. Part A 1995; 12: 515
- 7a Kato Y, Koshino H, Uzawa J, Anzai K. Biosci. Biotech. Biochem. 1996; 60: 2081
- 7b Höller U, Wright AD, Matthee GF, Konig GM, Dreager S, Aust H.-J, Schulz B. Mycol. Res. 2000; 104: 1354
- 7c Uchida R, Imasato R, Yamaguchi Y, Masuma R, Shiomi K, Tomoda H, Omura S. J. Antibiot. 2005; 58: 804
- 7d Putri SP, Ishido K, Kinoshita H, Kitani S, Ihara F, Sakihama Y, Igarashi Y, Nihira T. J. Biosci. Bioeng. 2014; 117: 557
- 8 Rieder JM, Lepschy J. Tetrahedron Lett. 2002; 43: 2375
- 9 Hydroxyfungerin B displays the original visoltricin backbone. However, until now, visoltricin had not been isolated from natural sources.
- 10 Koizumi Y, Arai M, Tomoda H, Omura S. J. Antibiot. 2004; 57: 415
- 11 Benhida R, Lezama R, Fourrey J.-L. Tetrahedron Lett. 1998; 39: 5963
- 12 Suh Y.-G, Seo S.-Y, Jung J.-K, Parka O.-H, Jeon R.-O. Tetrahedron Lett. 2001; 42: 1691
- 13a O’Connell JF, Parquette J, Yelle WE, Wang W, Rapoport H. Synthesis 1988; 767
- 13b Otto N, Opatz T. Beilstein J. Org. Chem. 2012; 8: 1105
- 13c Croft AK, Foley MK. Org. Biomol. Chem. 2008; 6: 1594
- 14a Maeda T, Makino K, Iwasaki M, Hamada Y. Chem. Eur. J. 2010; 16: 11954
- 14b Reichard GA, Alaimo CA, Shih N.-J, Ting PC, Carruthers NI, Lavey BJ. Patent EP 1032561, 2000
- 15a Dellaria JF. Jr, Santarsiero BD. J. Org. Chem. 1989; 54: 3916
- 15b Dellaria JF. Jr, Santarsiero BD. Tetrahedron Lett. 1988; 29: 6079
- 16a Synthesis of N-Boc C-prenyl sarcosine methyl ester: Court JJ, Desai RC, Hlasta DJ. US Patent 5494925, 1996
- 16b Data of N-Boc N-methylphenylalanine methyl ester: Dinh TQ, Du X, Armstrong RW. J. Org. Chem. 1996; 61: 6606
- 17a Tae HS, Hines J, Schneekloth AR, Crews CM. Bioorg. Med. Chem. 2011; 19: 1708
- 17b Williams JM, Jobson RB, Yasuda N, Marchesini G, Dolling U.-H, Grabowski EJ. Tetrahedron Lett. 1995; 36: 5461
- 18a Abarbri M, Parrain JL, Cintrat J.-C, Duchêne A. Synthesis 1996; 82
- 18b Suh Y.-G, Jung J.-K, Seo S.-Y, Min K.-H, Shin D.-Y, Lee Y.-S, Kim SH, Park H.-J. J. Org. Chem. 2002; 67: 4127
- 18c Zhdanko AG, Nenajdenko VG. J. Org. Chem. 2009; 74: 884
- 19 In analogy to ref. 12, maintenance of the orthoester moiety was achieved applying aqueous workup under basic (buffered) conditions (pH >7).
- 20 Nudelman A, Bechorl Y, Falb E, Fischerl B, Wexler BA, Nudelman A. Synth. Commun. 1998; 28: 471
- 21 Norris TO, McKee RL. J. Am. Chem. Soc. 1955; 77: 1056
- 22a Spero GP, McIntosh AV. Jr, Levin RH. J. Am. Chem. Soc. 1948; 70: 1907
- 22b Fraser MM, Raphael RA. J. Chem. Soc. 1952; 226
For selected examples, see:
For selected examples, see:
Sarcosine methyl ester hydrochloride:
N-Boc sarcosine methyl ester:
For glycine ester enolate alkylations, see:
Synthesis of N-Boc N-methylphenylalanine Weinreb amide:
3-Iodoacrylic acid:
For ester and ortho ester, see: