Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(05): 611-614
DOI: 10.1055/s-0036-1588389
DOI: 10.1055/s-0036-1588389
letter
Synthesis of Multisubstituted Allenes via Palladium-Catalyzed Cross-Coupling Reaction of Propargyl Acetates with an Organoaluminum Reagent
Further Information
Publication History
Received: 04 December 2016
Accepted after revision: 05 December 2016
Publication Date:
10 January 2017 (online)
Abstract
We describe a convenient method for the synthesis of multisubstituted allenes from cross-coupling of propargyl acetates with organoaluminum reagent: The reaction of propargyl acetates with 1.2 equivalents of organoaluminum reagent mediated by Pd(PPh3)2Cl2 (1 mol%)/Ph3P (2 mol%) and K2CO3 in THF may produce tri- or tetrasubstituted allenes in good to excellent yields (83–94%) and high regioselectivities (up to 99%) at 60 °C in 3–4 hours.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588389.
- Supporting Information
-
References
- 1a Modern Allene Chemistry. Vol. 1. Krause N, Hashmi AS. K. Wiley-VCH; Weinheim: 2004
- 1b Modern Allene Chemistry. Vol. 2. Krause N, Hashmi AS. K. Wiley-VCH; Weinheim: 2004
- 1c Ma SM. Palladium-Catalyzed Two- or Three-Component Cyclization of Functionalized Allenes. In Palladium in Organic Synthesis. Tsuji J. Springer; Berlin: 2005: 183-210
- 2a Zimmer R, Dinesh CU, Nandanan E, Khan FA. Chem. Rev. 2000; 100: 3067
- 2b Lu X, Zhang C, Xu Z. Acc. Chem. Res. 2001; 34: 535
- 2c Bates RW, Satcharoen V. Chem. Soc. Rev. 2002; 31: 12
- 2d Ma SM. Acc. Chem. Res. 2003; 36: 701
- 2e Brandsma L, Nedolya NA. Synthesis 2004; 735
- 2f Ma SM. Chem. Rev. 2005; 105: 2829
- 2g Ma SM. Aldrichimica Acta 2007; 40: 91
- 2h Ma SM. Acc. Chem. Res. 2009; 42: 1679
- 2i Yu SC, Ma SM. Angew. Chem. Int. Ed. 2012; 51: 3074
- 2j Alcaide B, Almendros P, Cembellín S, Martinez del Campo T, Fernández I. Chem. Commun. 2013; 49: 1282
- 2k Alcaide B, Almendros P, Alonso JM, Fernández I. J. Org. Chem. 2013; 78: 6688
- 2l Lechel T, Pfrengle F, Reissig HU, Zimmer R. ChemCatChem. 2013; 5: 2100
- 2m Ye JT, Ma SM. Acc. Chem. Res. 2014; 47: 989
- 3a Hoffmann-Röder A, Krause N. Angew. Chem. Int. Ed. 2004; 43: 1196 ; Angew. Chem. 2004, 116, 1216
- 3b Kim H, Williams LJ. Curr. Opin. Drug Discovery Dev. 2008; 11: 870
- 4a Sydnes LK. Chem. Rev. 2003; 103: 1133
- 4b Krause N, Hoffmann-Röder A. Tetrahedron 2004; 60: 11671
- 4c Brummond KM, Deforrest JE. Synthesis 2007; 795
- 4d Krause N, Belting V, Deutsch C, Erdsack J, Fan H, Gockel B, Hoffmann-Röder A, Morita N, Volz F. Pure Appl. Chem. 2008; 80: 1063
- 4e Ogasawara M. Tetrahedron: Asymmetry 2009; 20: 259
- 4f Yu SC, Ma SM. Chem. Commun. 2011; 47: 5384
- 4g Neff RK, Frantz DE. ACS Catal. 2014; 4: 519
- 5a Fürstner A, Mendez M. Angew. Chem. Int. Ed. 2003; 42: 5355
- 5b Ready JM, Pu X. J. Am. Chem. Soc. 2008; 130: 10874
- 5c Lo VK.-Y, Wong M.-K, Che C.-M. Org. Lett. 2008; 10: 517
- 5d Tang M, Fan C.-A, Zhang F.-M, Tu Y.-Q, Zhang W.-X, Wang A.-X. Org. Lett. 2008; 10: 5585
- 5e Ogasawara M, Okada A, Nakajima K, Takahashi T. Org. Lett. 2009; 11: 177
- 5f Zhao X, Zhong Z, Peng L, Zhang W, Wang J. Chem. Commun. 2009; 2535
- 5g Liu H, Leow D, Huang K.-W, Tan C.-H. J. Am. Chem. Soc. 2009; 131: 7212
- 5h Kolakowski RV, Manpadi M, Zhang Y, Emge TJ, Williams LJ. J. Am. Chem. Soc. 2009; 131: 12910
- 5i Lo VK.-Y, Zhou C.-Y, Wong M.-K, Che C.-M. Chem. Commun. 2010; 46: 213
- 5j Xiao Q, Xia Y, Li H, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2011; 50: 1114 ; Angew. Chem. 2011, 123, 1146
- 5k Wu Z, Berhal F, Zhao MM, Zhang ZG, Ayad T, Ratovelomanana-Vidal V. ACS Catal. 2014; 4: 44
- 5l Li QH, Jeng JY, Gau HM. Eur. J. Org. Chem. 2014; 7916
- 5m Li QH, Liao JW, Huang YL, Chianga RT, Gau HM. Org. Biomol. Chem. 2014; 12: 7634
- 5n Wang X, Wu ZJ, Wang J. Org. Lett. 2016; 18: 2174
- 6a Ma SM, Yu SC, Yin SH. J. Org. Chem. 2003; 68: 8996
- 6b Yokota M, Fuchibe K, Ueda M, Mayumi Y, Ichikawa J. Org. Lett. 2009; 11: 3994
- 7a Brossat M, Heck MP, Mioskowski C. J. Org. Chem. 2007; 72: 5938
- 7b Phadke N, Findlater M. Organometallics 2014; 33: 16
- 8a Kuang JK, Ma SM. J. Am. Chem. Soc. 2010; 132: 1786
- 8b Jiang GJ, Zheng QH, Dou M, Zhuo LG, Meng W, Yu ZX. J. Org. Chem. 2013; 78: 11783
- 9 Wang YL, Zhang WL, Ma SM. J. Am. Chem. Soc. 2013; 135: 11517
- 10a Deutsch C, Lipshutz BH, Krause N. Angew. Chem. Int. Ed. 2007; 46: 1650
- 10b Ito H, Sasaki Y, Sawamura M. J. Am. Chem. Soc. 2008; 130: 15774
- 10c Li HL, Müller D, Guénée L, Alexakis A. Org. Lett. 2013; 15: 334
- 10d Ohmiya H, Yokobori U, Makida Y, Sawamura M. Org. Lett. 2011; 13: 6312
- 10e Kobayashi K, Naka H, Wheatley AE. H, Kondo Y. Org. Lett. 2008; 10: 3375
- 10f Li Q.-H, Gau H.-M. Synlett 2012; 23: 747
- 10g Zhou H.-W, Liu G.-L, Zeng C.-Y. J. Organomet. Chem. 2008; 693: 787
- 10h Li J, Zhou C, Fu C.-L, Ma S.-M. Tetrahedron 2009; 65: 3695
- 10i Li J, Kong W.-Q, Fu C.-L, Ma S.-M. J. Org. Chem. 2009; 74: 5104
- 11a Biradar DB, Gau HM. Chem. Commun. 2011; 47: 10467
- 11b Shu WT, Zhou SL, Gau HM. Synthesis 2009; 4075
- 11c Ku SL, Hui XP, Chen CA, Kuo YY, Gau HM. Chem. Commun. 2007; 3847
- 11d Biradar DB, Gau HM. Org. Biomol. Chem. 2012; 10: 4243
- 11e Chen CR, Zhou SL, Biradar DB, Gau HM. Adv. Synth. Catal. 2010; 352: 1718
- 11f Yang HT, Zhou SL, Chang FS, Chen CR, Gau HM. Organometallics 2009; 28: 5715
- 11g Li Q.-H, Ding Y, Yang X.-J. Chin. Chem. Lett. 2014; 25: 1296
- 11h Li Q.-H, Ding Y, Huang NW. Chin. Chem. Lett. 2014; 25: 1469
- 12 Experimental Section 1H NMR and 13CNMR spectra were recorded on a Varian 400 MHz spectrometer. The chemical shifts are reported relative to TMS. Analytical thin-layer chromatography (TLC) was performed on silica 60F-254 plates. Flash column chromatography was carried out on silica gel (200–400 mesh). All reactions were carried out under nitrogen atmosphere. Chemical reagents and solvents were purchased from Damas-beta and Aldrich, and were used without further purification with the exception of these reagents: THF, Et2O, hexane, and toluene were distilled from sodium under nitrogen, and CH2Cl2 was distilled from CaH2. Compounds of propargyl acetates 1a–o were prepared according to literature procedures.5l,13,14 Purification of the reaction products was carried out by flash chromatography. General Procedures for the Synthesis of Propargyl Acetates 1a–o To a solution of the alkyne (16.5 mmol) in anhydrous THF (25 mL) at –78 °C under nitrogen atmosphere was added n-BuLi 1.6 M (16.5 mmol). The reaction was stirred at this temperature for 20 min then at r.t. for 1 h. After cooling to –78 °C, the aldehyde or ketone (15.0 mmol) was added, and the reaction was stirred at r.t. for 1 h. After addition of acetate anhydrous (30.0 mmol) at 0 °C, the reaction mixture was warmed to r.t. and stirred for 2 h before being quenched with a sat. aq NH4Cl solution. The mixture was extracted with Et2O (3 × 30 mL). The combined organic layers were washed with brine, dried over MgSO4, filtered, and evaporated to give the crude products. The crude product was subjected to flash column chromatography on silica gel (hexane or EtOAc and hexane) to afford the corresponding propargylic acetate 1. 1,3-Diphenylprop-2-ynyl Acetate (1a)5l 1H NMR (400 MHz, CDCl3): δ = 7.62–7.58 (m, 2 H), 7.50–7.46 (m, 2 H), 7.44–7.37 (m, 3 H), 7.36–7.28 (m, 3 H), 6.70 (s, 1 H), 2.14 (s, 3 H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ = 169.7, 137.1, 131.8, 128.9, 128.7, 128.6, 128.2, 127.7, 122.0, 87.0, 85.5, 66.0, 21.0 ppm.General Procedures for the Cross-Coupling Reaction of Propargyl Acetates with TrimethylaluminumUnder a dry nitrogen atmosphere, a mixture of Pd(PPh3)2Cl2 (0.0035 g, 0.005 mmol), Ph3P (0.0026 g, 0.01 mmol), and K2CO3 (0.138 g, 1.0 mmol) in a reaction vessel was added AlMe3 (0.6 mmol) in THF (1 mL) followed by an addition of propargyl acetate (0.50 mmol). The resulted solution was stirred at 60 °C for 3–4 h. After completion the reaction, the mixture was diluted with sat. NH4Cl solution (5 mL) and extracted with EtOAc (3 × 15 mL). The combined organic layers were dried over anhydrous Na2SO4, filtered, and evaporated under vacuum. The residue was subjected to flash column chromatography on silica gel (hexane or EtOAc and hexane) to afford the corresponding allene products 2. 1,3-Diphenylbuta-1,2-diene (2a)5l Yellow oil; 0.174 g (85%). 1H NMR (400 MHz, CDCl3): δ = 7.48–7.44 (m, 2 H), 7.36–7.28 (m, 6 H), 7.25–7.20 (m, 2 H), 6.48 (q, J = 2.8 Hz, 1 H), 2.23 (d, J = 2.8 Hz, 3 H) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ = 206.8, 136.3, 134.5, 128.7, 128.5, 127.03, 127.02, 126.9, 125.8, 104.5, 96.6, 16.8 ppm.
- 13 Mahrwald R, Quint S. Tetrahedron 2000; 56: 7463
- 14 Kessler SN, Bäckvall JE. Angew. Chem. Int. Ed. 2016; 128: 3798
For recent monographs, see:
For some recent reviews on the chemistry of allenes, see:
For a review on the natural products and pharmaceuticals containing allene unit (s), see:
For reviews on the synthesis of allenes, see:
For selected examples of allene synthesis with related methods, see: