Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(15): 2014-2017
DOI: 10.1055/s-0036-1588445
DOI: 10.1055/s-0036-1588445
letter
A Systematic Study of the Synthesis of 2ʹ-Deoxynucleosides by Mitsunobu Reaction
This work was supported by JSPS KAKENHI Grant Number 15H01062, 15K13738, and 26288075Further Information
Publication History
Received: 30 March 2017
Accepted after revision: 09 May 2017
Publication Date:
07 June 2017 (online)
Abstract
The Mitsunobu reaction has emerged as an important alternative for the preparation of synthetic 2′-deoxynucleosides, which have various biological and biotechnological applications. In this work, the Mitsunobu-based synthesis of 2′-deoxynucleosides was systematically studied. The effect of phosphine, azodicarbonyl reagent, and solvent on the product yield and α/β ratio was investigated, and the highest yield and β-selectivity were obtained using (n-Bu)3P and 1,1′-(azodicarbonyl)dipiperidine in DMF. The reaction was successfully applied to various nucleobase analogues.
Key words
nucleoside synthesis - Mitsunobu reaction - N-glycosidation - stereoselectivity - solvent effectsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588445.
- Supporting Information
-
References and Notes
- 1 McGuigan C. Yarnold CJ. Jones G. Velázquez S. Barucki H. Brancale A. Andrei G. Snoeck R. De Clercq E. Balzarini J. J. Med. Chem. 1999; 42: 4479
- 2a Tokugawa M. Masaki Y. Canggadibrata JC. Kaneko K. Shiozawa T. Kanamori T. Grøtli M. Wilhelmsson LM. Sekine M. Seio K. Chem. Commun. 2016; 52: 3809
- 2b Sandin P. Lincoln P. Brown T. Wilhelmsson LM. Nat. Protoc. 2007; 2: 615
- 3a Okamoto I. Miyatake Y. Kimoto M. Hirao I. ACS Synth. Biol. 2016; 5: 1220
- 3b Winiger CB. Shaw RW. Kim M.-J. Moses JD. Matsuura MF. Benner SA. ACS Synth. Biol. 2017; 6: 194
- 3c Malyshev DA. Romesberg FE. Angew. Chem. Int. Ed. 2015; 54: 11930
- 3d Cavanagh BL. Walker T. Norazit A. Meedeniya AC. Molecules 2011; 16: 7980
- 4a Marfurt J. Parel SP. Leumann CJ. Nucleic Acids Res. 1997; 25: 1875
- 4b Timofeev EN. Goryaeva BV. Florentiev VL. J. Biomol. Struct. Dyn. 2006; 24: 183
- 4c Kolganova NA. Shchyolkina AK. Chudinov AV. Zasedatelev AS. Florentiev VL. Timofeev EN. Nucleic Acids Res. 2012; 40: 8175
- 5a Ingale SA. Seela F. Tetrahedron 2014; 70: 380
- 5b Singer M. Nierth A. Jäschke A. Eur. J. Org. Chem. 2013; 2766
- 5c Seela F. Peng X. Collect. Czech. Chem. Commun. 2006; 71: 956
- 5d Seela F. Peng X. Synthesis 2004; 1203
- 5e Ramasamy K. Imamura N. Robins RK. Revankar GR. Tetrahedron Lett. 1987; 28: 5107
- 5f Kazimierczuk Z. Cottam HB. Revankar GR. Robins RK. J. Am. Chem. Soc. 1984; 106: 6379
- 6a Shigeta S. Mori S. Watanabe F. Takahashi K. Nagata T. Koike N. Wakayama T. Saneyoshi M. Antiviral Chem. Chemother. 2002; 13: 67
- 6b Niedballa U. Vorbrüggen H. Angew. Chem., Int. Ed. Engl. 1970; 9: 461
- 6c Kotick MP. Szantay C. Bardos TJ. J. Org. Chem. 1969; 34: 3806
- 6d Michel J. Gueguen G. Vercauteren J. Moreau S. Tetrahedron 1997; 53: 8457
- 7 Szarek WA. Depew C. Jarrell HC. Jones JK. N. J. Chem. Soc., Chem. Commun. 1975; 648
- 8 Hu W. Wang PA. Song C. Pan Z. Wang Q. Guo X. Yu X. Shen Z. Wang S. Chang J. Bioorg. Med. Chem. Lett. 2010; 20: 7297
- 9a Downey AM. Richter C. Pohl R. Mahrwald R. Hocek M. Org. Lett. 2015; 17: 4604
- 9b Downey AM. Pohl R. Roithová J. Hocek M. Chem. Eur. J. 2017; 23: 3910
- 10 Walker JA. Chen JJ. Wise DS. Townsend LB. J. Org. Chem. 1996; 61: 2219
- 11 Tsunoda T. Yamamiya Y. Ito S. Tetrahedron Lett. 1993; 34: 1639
- 12 Dai Q. Ran C. Harvey RG. Org. Lett. 2005; 7: 999
- 13 Khan AT. Ghosh S. Choudhury LH. Eur. J. Org. Chem. 2004; 2198
- 14 Johnson DC. II. Widlanski TS. Org. Lett. 2004; 6: 4643