Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(17): 2272-2276
DOI: 10.1055/s-0036-1588482
DOI: 10.1055/s-0036-1588482
letter
Copper-Catalyzed Direct Synthesis of Aryl Thiols from Aryl Iodides Using Sodium Sulfide Aided by Catalytic 1,2-Ethanedithiol
We gratefully acknowledge the financial support by the Fundamental Research Funds for the Central Universities (DUT15RC(3)043; DUT17LK23), National Research Foundation of Korea (Basic Science Research Program Fund: NRF2015R1D1A1A01060188).Further Information
Publication History
Received: 21 May 2017
Accepted after revision: 07 June 2017
Publication Date:
18 July 2017 (online)
Abstract
A copper-catalyzed direct and effective synthesis of aryl thiols from aryl iodides using readily available Na2S·9H2O and 1,2-ethanedithiol was described. A variety of aryl thiols were readily obtained in yields of 76–99%. In this protocol, Na2S·9H2O was used as ultimate sulfur source, and 1,2-ethanedithiol functioned as an indispensable catalytic reagent.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588482.
- Supporting Information
-
References and Notes
- 1a Hoyle CE. Lowe AB. Bowman CN. Chem. Soc. Rev. 2010; 39: 1355
- 1b Hand CE. Honek JF. J. Nat. Prod. 2005; 68: 293
- 1c Roy K.-M. Thiols and Organic Sulfides. In Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim: 2000
- 2 Leuckart R. J. Prakt. Chem. 1890; 41: 179
- 3a Newman MS. Karnes HA. J. Org. Chem. 1966; 31: 3981
- 3b Kwart H. Evans ER. J. Org. Chem. 1966; 31: 410
- 4 Schoenberg A. Vargha L. Ber. Dtsch. Chem. Ges. 1930; 63: 178
- 5a Uchiro H. Kobayashi S. Tetrahedron Lett. 1999; 40: 3179
- 5b Bellale EV. Chaudhari MK. Akamanchi KG. Synthesis 2009; 3211
- 5c Nose A. Kudo T. Chem. Pharm. Bull. 1987; 35: 1770
- 6a Reddy GV. S. Rao GV. Iyengar DS. Synth. Commun. 2000; 30: 859
- 6b Cha JS. Kim JM. Jeoung MK. Bull. Korean Chem. Soc. 1992; 13: 702
- 6c Chary KP. Rajaram S. Iyengar DS. Synth. Commun. 2000; 30: 3095
- 7a Testaferri L. Tingoli M. Tiecco M. Tetrahedron Lett. 1980; 21: 3099
- 7b Testaferri L. Tiecco M. Tingoli M. Chianelli D. Montanucci M. Synthesis 1983; 751
- 7c Shaw JE. J. Org. Chem. 1991; 56: 3728
- 8 Crowley DJ. Kosak AL. US 2490257, 1946
- 9a Liu Y. Liu S. Xiao Y. Beilstein J. Org. Chem. 2017; 13: 589
- 9b Aubin Y. Fischmeister C. Thomas CM. Renaud J.-L. Chem. Soc. Rev. 2010; 39: 4130
- 10a Lee CF. Liu YC. Badsara SS. Chem. Asian J. 2014; 9: 706
- 10b Eichman CC. Stambuli JP. Molecules 2011; 16: 590
- 11a Sun L.-L. Deng C.-L. Tang R.-Y. Zhang X.-G. J. Org. Chem. 2011; 76: 7546
- 11b Li Y.-P. Nie C.-P. Wang H.-F. Li X.-Y. Verpoort F. Duan C. Eur. J. Org. Chem. 2011; 7331
- 12a Jiang Y.-W. Qin Y.-X. Xie S.-W. Zhang X.-J. Dong J.-H. Ma D.-W. Org. Lett. 2009; 11: 5250
- 12b Xu H.-J. Liang Y.-F. Cai Z.-Y. Qi H.-X. Yang C.-Y. Feng Y.-S. J. Org. Chem. 2011; 76: 2296
- 12c Rostami A. Rostami A. Iranpoor N. Zolfigol MA. Tetrahedron Lett. 2016; 57: 192
- 13a Takagi K. Chem. Lett. 1985; 14: 1307
- 13b Takagi K. Chem. Lett. 1986; 16: 1379
- 13c Qiao S. Xie K. Qi J.-S. Chin. J. Chem. 2010; 28: 1441
- 14 Fernández-Rodríguez MA. Hartwig JF. Chem. Eur. J. 2010; 16: 2355
- 15 Yi J. Fu Y. Xiao B. Cui W.-C. Guo Q.-X. Tetrahedron Lett. 2011; 52: 205
- 16 Sawada N. Itoh T. Yasuda N. Tetrahedron Lett. 2006; 47: 6595
- 17 Itoh T. Mase T. Org. Lett. 2004; 6: 4587
- 18 Palani T. Park K. Song K.-H. Lee S. Adv. Synth. Catal. 2013; 355: 1160
- 19 Liu Y. Kim J. Seo H. Park S. Chae J. Adv. Synth. Catal. 2015; 357: 2205
- 20a Zhao D.-B. Wu N.-J. Zhang S. Xi P.-H. Su X.-Y. Lan J.-B. You J.-S. Angew. Chem. Int. Ed. 2009; 48: 8729
- 20b Tlili A. Xia N. Monnier F. Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 8725
- 20c Maurer S. Liu W. Zhang X.-J. Jiang Y.-W. Ma D.-W. Synlett 2010; 976
- 20d Kim J. Battsengel O. Liu Y. Chae J. Bull. Korean Chem. Soc. 2015; 36: 2833
- 21 General Experimental Procedure for the Synthesis of Aryl Thiols from Aryl Iodides To a test tube containing a magnetic bar was added aryl iodide (1 mmol), copper powder (6.35 mg, 0.1 mmol), Na2S·9H2O (720.54 mg, 3 mmol), and DMSO (2 mL). After flushing with argon, 1,2-ethanedithiol (8.4 μL, 0.1 mmol) was added. The mixture was stirred in the oil bath at 100 °C for 20 h. After cooled to ambient temperature, the reaction mixture was distributed in aq HCl (5%) and EtOAc. The organic layer was separated and washed with water and brine, dried, and concentrated under vacuum. The crude product was further purified by column chromatography using ethyl acetate/n-hexane as eluent to provide the desired aryl thiol. Analytical Data of Representative Compounds 4-Methylbenzenethiol (2a) 19 Yield 97%; white solid. 1H NMR (500 MHz, CDCl3): δ = 7.19 (d, J = 8.1 Hz, 2 H), 7.06 (d, J = 8.0 Hz, 2 H), 3.39 (s, 1 H), 2.31 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 135.6, 129.8, 129.8, 126.5, 20.9. 4-Methoxybenzenethiol (2h) 19 Yield 93%; yellow liquid. 1H NMR (500 MHz, CDCl3): δ = 7.18 (d, J = 8.5 Hz, 2 H), 6.72 (d, J = 8.8 Hz, 2 H), 3.70 (s, 3 H), 3.28 (s, 1 H). 13C NMR (126 MHz, CDCl3): δ = 158.5, 132.4, 119.8, 114.7, 55.3. 4-Mercaptobenzoic Acid (2n)19 Yield 99%; white powder. 1H NMR (500 MHz, CDCl3): δ = 7.96 (d, J = 7.5 Hz, 2 H), 7.32 (d, J = 7.6 Hz, 2 H), 3.65 (s, 1 H). 13C NMR (126 MHz, CDCl3): δ = 171.1, 139.8, 130.8, 128.1, 126.1.
See reviews on transition-metal-catalyzed synthesis of phenols and anilines from aryl halides:
See reviews on transition-metal-catalyzed C–S coupling reaction: