Synlett 2017; 28(18): 2505-2508
DOI: 10.1055/s-0036-1588529
letter
© Georg Thieme Verlag Stuttgart · New York

Nonenzymatic Biomimetic Synthesis of Black Tea Pigment Theaflavins

Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan   Email: y-matsuo@nagasaki-u.ac.jp   Email: t-tanaka@nagasaki-u.ac.jp
,
Ryosuke Oowatashi
Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan   Email: y-matsuo@nagasaki-u.ac.jp   Email: t-tanaka@nagasaki-u.ac.jp
,
Yoshinori Saito
Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan   Email: y-matsuo@nagasaki-u.ac.jp   Email: t-tanaka@nagasaki-u.ac.jp
,
Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan   Email: y-matsuo@nagasaki-u.ac.jp   Email: t-tanaka@nagasaki-u.ac.jp
› Author Affiliations
This work was supported by JSPS KAKENHI Grant Numbers JP16K07741 and JP17K08338
Further Information

Publication History

Received: 07 June 2017

Accepted after revision: 04 July 2017

Publication Date:
11 August 2017 (online)


Abstract

Theaflavins are reddish-orange black tea pigments with a benzotropolone chromophore, and their various biological activities have been reported. Theaflavins are produced by oxidative coupling between catechol-type and pyrogallol-type catechins via bicyclo[3.2.1]octane-type intermediates. In this study, a new method for nonenzymatic biomimetic synthesis of theaflavins was developed using the DPPH radical as an oxidizing agent.

Supporting Information

 
  • References and Notes

  • 2 Engelhardt UH. Chemistry of Tea. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Reedijk J. Elsevier; Waltham, MA: 2013.
  • 9 Yanase E. Sawaki K. Nakatsuka S. Synlett 2005; 2661
  • 11 Sang S. Lambert JD. Tian S. Hong J. Hou Z. Ryu J.-H. Stark RE. Rosen RT. Huang M.-T. Yang CS. Ho C.-T. Bioorg. Med. Chem. 2004; 12: 459
  • 13 Takemoto M. Takemoto H. Sakurada A. Tetrahedron Lett. 2014; 55: 5038
  • 14 Yoruk R. Marshall MR. J. Food Biochem. 2003; 27: 361
  • 15 Qi X. Fitoterapia 2010; 81: 205
  • 16 Yanase E. Matsumoto E. Shinoda Y. Nakatsuka S. ITE Lett. Batteries, New Technol. Med. 2005; 6: 232
  • 18 Sawai Y. Sakata K. J. Agric. Food Chem. 1998; 46: 111

    • The kinetic and mechanistic studies for the oxidation of catechol derivatives including 5 and 9 by DPPH radical were also reported:
    • 19a Suzuki M. Mori M. Nanjo F. Hara Y. In Caffeinated Beverages, Health Benefits, Physiological Effects, and Chemistry . Parliment TH. Ho CT. Schieberle P. Vol. 754. ACS Symposium Series, American Chemical Society; Washington, DC: 2000: 146
    • 19b Goupy P. Dufour C. Loonis M. Dangles O. J. Agric. Food Chem. 2003; 51: 615
    • 19c Dangles O. Fargeix G. Dufour C. J. Chem. Soc., Perkin Trans. 2 2000; 1653
    • 19d Chen W.-L. Li W.-S. Fu P.-J. Yeh A. Int. J. Chem. Kinet. 2011; 43: 147
    • 19e Lin L.-M. Li W.-S. Chen W.-L. Yeh A. J. Chin. Chem. Soc. 2010; 57: 883
  • 20 Currently, we are investigating the structure of the bicyclo[3.2.1]octane intermediate by converting it into a stable derivative. The details will be reported in the near future.
  • 21 Experimental Procedure for Synthesis of Theaflavin (1) DPPH (543 mg, 1.4 mmol) was added to an acetone solution (100 mL) of epicatechin (5, 200 mg, 0.69 mmol). After stirring for 1 h at r.t., an acetone solution (50 mL) of epigallocatechin (7, 106 mg, 0.35 mmol) was added to the reaction mixture and stirred for 15 min at r.t. Then, water (150 mL) was added to the reaction mixture and stirred for 15 min. The reaction mixture was concentrated in vacuo, and the residue was applied to a column of MCI-gel CHP20P (3.0 × 24 cm; 0–80% aq MeOH, 10% stepwise, each 200 mL) to afford a crude theaflavin (1) fraction along with 5 (154 mg, 77%). The crude fraction of 1 was purified with Sephadex LH-20 (3.0 × 20 cm; 40–100% aq MeOH, 10% stepwise, each 200 mL) to afford 1 4c,d,11,22 (91.3 mg, 0.16 mmol, 47% from 7) and theanaphthoquinone (10)23 (2.9 mg, 0.0054 mmol, 1.6% from 7). Analytical Data for Theaflavin (1) Reddish-orange amorphous powder, [α]D 25 –234 (c 0.105, MeOH). FAB-MS: m/z = 565 [M + H]+, 587 [M + Na]+. HRMS–FAB: m/z calcd for C29H25O12: 565.1346; found: 565.1340 [M + H]+. IR: 3406, 2935, 1627, 1604, 1518, 1470, 1419, 1310, 1227 cm–1. UV (MeOH): λmax (log ε) = 462 (3.49), 378 (3.90), 267 (4.27). 1H NMR (400 MHz, acetone-d 6 + D2O, 95:5): δ = 8.00 (s, H-g), 7.93 (s, H-e), 7.53 (s, H-c), 6.04 (d, J = 2.2 Hz, H-6′), 6.02 (d, J = 2.4 Hz, H-6), 5.99 (d, J = 2.2 Hz, H-8′), 5.95 (d, J = 2.4 Hz, H-8), 5.69 (s, H-2′), 4.98 (s, H-2), 4.45 (m, H-3′), 4.36 (m, H-3), 2.95 (dd, J = 16.8, 4.4 Hz, H-4′a), 2.89 (dd, J = 16.8, 4.4 Hz, H-4a), 2.80 (dd, J = 16.8, 2.3 Hz, H-4b), 2.77 (br d, J = 16.8 Hz, H-4′b). 13C NMR (100 MHz, acetone-d 6 + D2O, 95:5): δ = 185.1 (C-a), 157.8, 157.7, 157.6, 157.5 (C-5, 7, 5′, 7′), 157.0 (C-8′a), 156.5 (C-8a), 154.6 (C-b), 150.4 (C-i), 146.1 (C-h), 135.0 (C-d), 131.7 (C-f), 128.6 (C-k), 126.9 (C-e), 123.9 (C-g), 121.7 (C-j), 118.9 (C-c), 99.8 (C-4′a), 99.3 (C-4a), 96.5 (2 C, C-6, 6′), 95.6 (C-8′), 95.3 (C-8), 81.2 (C-2), 76.6 (C-2′), 66.2 (C-3), 65.0 (C-3′), 29.5 (C-4′), 29.2 (C-4).
    • 23a Tanaka T. Betsumiya Y. Mine C. Kouno I. Chem. Commun. 2000; 1365
    • 23b Jhoo J.-W. Lo C.-Y. Li S. Sang S. Ang CY. W. Heinze TM. Ho C.-T. J. Agric. Food Chem. 2005; 53: 6146
  • 24 Balentine DA. Wiseman SA. Bouwens LC. M. Crit. Rev. Food Sci. Nutr. 1997; 37: 693
  • 27 Arpin N. Favre-Bonvin J. Steglich W. Phytochemistry 1974; 13: 1949
  • 28 Klostermeyer D. Knops L. Sindlinger T. Polborn K. Steglich W. Eur. J. Org. Chem. 2000; 603
  • 29 Kerschensteiner L. Löbermann F. Steglich W. Trauner D. Tetrahedron 2011; 67: 1536
    • 30a Mesa-Siverio D. Estévez-Braun A. Ravelo ÁG. Murguia JR. Rodríguez-Afonso A. Eur. J. Org. Chem. 2003; 4243
    • 30b Fukui N. Ohmori K. Suzuki K. Helv. Chim. Acta 2012; 95: 2194