Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(13): 1620-1623
DOI: 10.1055/s-0036-1588816
DOI: 10.1055/s-0036-1588816
letter
Metal-Free Ammonium Iodide Catalyzed Oxidative Dehydrocoupling of Silanes with Alcohols
Further Information
Publication History
Received: 14 February 2017
Accepted after revision: 02 April 2017
Publication Date:
17 May 2017 (online)

Abstract
An ammonium iodide catalyzed direct oxidative coupling of silanes with alcohols to give various alkoxysilane derivatives was discovered. tert-Butyl hydroperoxide proved to be an efficient oxidant for this transformation. Attractive features of this protocol include its transition-metal-free nature and the mild reaction conditions.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588816.
- Supporting Information
-
References
- 1a Greene TW. Wuts PG. M. Protective Groups in Organic Synthesis . 3rd ed. Wiley; New York: 1999
- 1b Huang C. Ghavtadze N. Chattopadhyay B. Gevorgyan V. J. Am. Chem. Soc. 2011; 133: 17630
- 1c Herrera NN. Letoffe J.-M. Putaux J.-L. David L. Bourgeat-Lami E. Langmuir 2004; 20: 1564
- 1d Brook M. Silicon in Organic, Organometallic, and Polymer Chemistry. Wiley; New York: 2000
- 2a Studer A. Bossart M. Vasella T. Org. Lett. 2000; 2: 985
- 2b Behloul C. Guijarro D. Yus M. Tetrahedron 2005; 61: 6908
- 2c López R. Zalacain M. Palomo C. Chem. Eur. J. 2011; 17: 2450
- 2d Dias LC. de Lucca EC. Jr. Ferreira MA. B. Garcia DC. Tormena CF. J. Org. Chem. 2012; 77: 1765
- 2e Poulsen PH. Santos Feu K. Matos Paz B. Jensen F. Jørgensen KA. Angew. Chem. Int. Ed. 2015; 54: 8203
- 3a Do Y. Han J. Rhee YH. Park J. Adv. Synth. Catal. 2011; 353: 3363
- 3b Toh CK. Poh HT. Lim CS. Fan WY. J. Organomet. Chem. 2012; 717: 9
- 4 Toh CK. Sum YN. Fong WK. Ang SG. Fan WY. Organometallics 2012; 31: 3880
- 5 Field LD. Messerle BA. Rehr M. Soler LP. Hambley TW. Organometallics 2003; 22: 2387
- 6 Sridhar M. Raveendra J. Ramanaiah BC. Narsaiah C. Tetrahedron Lett. 2011; 52: 5980
- 7a Purkayashtha A. Baruah JB. J. Mol. Catal. A: Chem. 2003; 198: 47
- 7b Mirza-Aghayan M. Boukherroub R. Bolourtchian M. J. Organomet. Chem. 2005; 690: 2372
- 8 Purkayashtha A. Baruah JB. Silicon Chem. 2002; 1: 229
- 9a Blakwell JM. Foster KL. Beck VH. Piers WE. J. Org. Chem. 1999; 64: 4887
- 9b Kim Y. Chang S. Angew. Chem. Int. Ed. 2016; 55: 218
- 10 Gao D. Cui C. Chem. Eur. J. 2013; 19: 11143
- 11a Toutov AA. Betz KN. Haibach MC. Romine AM. Grubbs RH. Org. Lett. 2016; 18: 5776
- 11b Bideau FL. Coradin T. Hénique J. Samuel E. Chem. Commun. (Cambridge) 2001; 1408
- 12 Tanabe Y. Okumura H. Maeda A. Murakami M. Tetrahedron Lett. 1994; 35: 8413
- 13a Liu C. Zhang H. Shi W. Lei A. Chem. Rev. 2011; 111: 1780
- 13b Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
- 13c Shi W. Liu C. Lei A. Chem. Soc. Rev. 2011; 40: 2761
- 13d Song G. Wang F. Li X. Chem. Soc. Rev. 2012; 41: 3651
- 13e Li B.-J. Shi Z.-J. Chem. Soc. Rev. 2012; 41: 5588
- 14a Wang L. Zhu H. Guo S. Cheng J. Yu J.-T. Chem. Commun. (Cambridge) 2014; 50: 10864
- 14b Xu L. Zhang S. Li P. Org. Chem. Front. 2015; 2: 459
- 14c Leifert D. Studer A. Org. Lett. 2015; 17: 386
- 14d Zhang L. Liu D. Liu Z.-Q. Org. Lett. 2015; 17: 2534
- 14e Gu J. Cai C. Chem. Commun. (Cambridge) 2016; 52: 10779
- 14f Zhang L. Hang Z. Liu Z.-Q. Angew. Chem. 2016; 128: 244
- 15a Guo S. Yuan Y. Xiang J. Org. Lett. 2013; 15: 4654
- 15b Yuan Y. Guo S. Xiang J. Synlett 2013; 24: 443
- 15c Guo S. He W. Xiang J. Yuan Y. Tetrahedron Lett. 2014; 55: 6407
- 15d Guo S. He W. Xiang J. Yuan Y. Chem. Commun. (Cambridge) 2014; 50: 8578
- 15e Guo S. Yuan Y. Xiang J. New J. Chem. 2015; 39: 3093
- 15f Guo S. Yuan Y. Synlett 2015; 26: 1961
- 16a Shang X. Liu Z.-Q. Org. Biomol. Chem. 2016; 14: 7829
- 16b Toutov AA. Liu W.-B. Betz KN. Fedorov A. Stoltz BM. Grubbs RH. Nature 2015; 518: 80
- 16c Weickgenannt A. Oestreich M. Chem. Asian J. 2009; 4: 406
- 17 NH4I-Catalyzed Oxidative Dehydrocoupling of Silanes with Alcohols: General Procedure 70% aq TBHP (4.0 mmol) was added dropwise over 10 min to a solution of the appropriate silane (1.0 mmol) and NH4I (0.20 mmol) in the appropriate alcohol (1 mL), and the mixture was stirred at r.t. until the reaction was complete (TLC). The reaction was then quenched with sat. aq Na2S2O3, and the mixture was washed with brine, extracted with EtOAc, dried (Na2SO4), and concentrated under vacuum. The crude product was purified by column chromatography (silica gel, PE). Ethoxy(triphenyl)silane (3aa) Colorless liquid; yield: 280 mg (92%). 1H NMR (300 MHz, CDCl3): δ = 7.66 (d, J = 6.4 Hz, 6 H), 7.42 (dt, J = 13.5, 6.6 Hz, 9 H), 3.90 (q, J = 7.0 Hz, 2 H), 1.26 (t, J = 6.9 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 135.49, 134.55, 130.06, 127.95, 59.85, 18.49. HRMS (TOF, EI+): m/z calcd for C20H20OSi: 304.1283; found: 304.1285.
For selected examples, see: