Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(20): 2836-2840
DOI: 10.1055/s-0036-1588883
DOI: 10.1055/s-0036-1588883
letter
The Preparation and Reactivity of 2-Bromo-3-(tri-n-butylstannyl)-1-propene
Further Information
Publication History
Received: 13 May 2016
Accepted after revision: 25 August 2016
Publication Date:
09 September 2016 (online)
Abstract
The preparation of 2-bromo-3-(tri-n-butylstannyl)-1-propene is described. This study characterizes the reactivity of 2-bromo-3-(tri-n-butylstannyl)-1-propene in SE′ reactions with aldehydes and includes a survey of radical reactions of 2-bromo-3-(tri-n-butylstannyl)-1-propene with α-bromocarbonyl compounds for C-alkylation.
Key words
organostannane preparation - bifunctional reagent - SE′ reactions - radical reaction - alkenyl bromidesSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588883.
- Supporting Information
-
References and Notes
- 1 New address: A. A. Shah, Pfizer, Groton, CT, 06340, USA.
- 2 New address: D. A. Brooks, Eli Lilly & Company, Indianapolis, IN 46285, USA.
- 3 New address: N. Zorn, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland.
- 4a For an example of sequential SE′ reactions, see: Williams DR, Claeboe CD, Liang B, Zorn N, Chow NS. C. Org. Lett. 2012; 14: 3866
- 4b For an example of sequential cross coupling–carbocyclization reactions, see: Williams DR, Shah AA, Mazumder S, Baik M.-H. Chem. Sci. 2013; 4: 238
- 5a Piers E, Gilbert M, Cook KL. Org. Lett. 2000; 2: 1407
- 5b Martin DB. C, Vanderwal CD. J. Am. Chem. Soc. 2009; 131: 3472
- 6 Williams DR, Meyer KG. J. Am. Chem. Soc. 2001; 123: 765
- 7a Williams DR, Fultz MW. J. Am. Chem. Soc. 2005; 127: 14550
- 7b Williams DR, Morales-Ramos ÁI, Williams CM. Org. Lett. 2006; 8: 4393
- 8a Ferris GE, Hong K, Roundtree IA, Morken JP. J. Am. Chem. Soc. 2013; 135: 2501
- 8b Sieber JD, Morken JP. J. Am. Chem. Soc. 2006; 128: 74
- 8c Chen M, Roush WR. J. Am. Chem. Soc. 2013; 135: 9512
- 8d Peng F, Hall DG. J. Am. Chem. Soc. 2007; 129: 3070
- 8e Macé A, Tripoteau F, Zhao Q, Gayon E, Vrancken E, Campagne J.-M, Carboni B. Org. Lett. 2013; 15: 906
- 8f Fernández E, Pietruszka J, Frey W. J. Org. Chem. 2010; 75: 5580
- 8g González AZ, Román JG, Alicea E, Canales E, Soderquist JA. J. Am. Chem. Soc. 2009; 131: 1269
- 8h Binanzer M, Fang GY, Aggarwal VK. Angew. Chem. Int. Ed. 2010; 49: 4264
- 8i Nishiyama H, Narimatsu S, Itoh K. Tetrahedron Lett. 1981; 22: 5289
- 9a Corey EJ, Yu C.-M, Kim S.-S. J. Am. Chem. Soc. 1989; 111: 5495
- 9b Corey EJ, Kim S.-S. Tetrahedron Lett. 1990; 31: 3715
- 10a Barbero A, Cuadrado P, Fleming I, González AM, Pulido FJ. Chem. Commun. 1990; 1030
- 10b Barbero A, Cuadrado P, Fleming I, González AM, Pulido FJ. J. Chem. Soc., Perkin Trans. 1 1992; 327
- 10c The data for the product 2-bromo-3-(tributylstannyl)prop-1-ene is given as follows: 1H NMR (400 MHz, CDCl3): δ = 5.6 (1 H, m), 5.35 (1 H, m), 2.25 (2 H, s), 1.70–0.70 (27 H, m). The reported data of their product differs substantially with respect to the key vinylic and allylic hydrogen assignments of Figure 1.
- 11a Williams DR, Brooks DA, Meyer KG, Clark MP. Tetrahedron Lett. 1998; 39: 7251
- 11b Williams DR, Meyer KG, Shamim K, Patnaik S. Can. J. Chem. 2004; 82: 120
- 12a Williams DR, Kiryanov AA, Emde U, Clark MP, Berliner MA, Reeves JT. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 12058
- 12b Williams DR, Plummer SV, Patnaik S. Org. Lett. 2003; 5: 5035
- 12c Williams DR, Brooks DA, Berliner MA. J. Am. Chem. Soc. 1999; 121: 4924
- 13a Williams DR, Walsh MJ, Claeboe CD, Zorn N. Pure Appl. Chem. 2009; 81: 181
- 13b Williams DR, Atwater BA, Bawel SA, Ke P, Gutierrez O, Tantillo DJ. Org. Lett. 2014; 16: 468
- 14 For a discussion in total synthesis: Williams DR, Plummer SV, Patnaik S. Tetrahedron 2011; 67: 5083
- 15 For preparation of the corresponding 2-chloro-3-(tri-n-butylstannyl)-1-propene: Baldwin JE, Adlington RM, Lowe C, O’Neil IA, Sanders GL, Schofield CJ, Sweeney JB. Chem. Commun. 1988; 1030
- 16 Still WC. J. Am. Chem. Soc. 1978; 100: 1481
- 17 The allylic alcohol 2-bromo-1-propen-3-ol (10.6 g, 64.3 mmol) was dissolved in CH2Cl2 at 0 °C, and Et3N (10.3 mL, 73.9 mmol) was added under inert atmosphere. After stirring for 5 min, methanesulfonyl chloride (5.72 mL, 73.9 mL) was added dropwise at 0 °C. The reaction mixture was allowed to warm to 22 °C with continued stirring over 2 h. TLC (20% EtOAc in hexanes) shows the production of a less polar mesylate and the disappearance of starting alcohol. The reaction mixture was concentrated under reduced pressure to approximately one-third of its volume, and the concentrate was diluted with Et2O (150 mL). The mixture was filtered through a pad of Celite® to remove the triethylammonium hydrochloride precipitate with the aid of additional quantities of Et2O. The filtrate was concentrated in vacuo to give the crude mesylate as a yellow oil with yields consistently in the 85–90% range. Vacuum distillation (1.4 mm Hg pressure) by Kugelrohr bulb-to-bulb transfer at an oven temperature of 60 °C afforded product as a colorless liquid which was judged to be >97% pure based on the 1H NMR and 13C NMR spectra of these samples. 1H NMR (400 MHz, CDCl3): δ = 6.08 (1 H), 5.78 (1 H), 4.81 (2 H), 3.09 (3 H). 13C NMR (400 MHz, CDCl3): δ = 124.1, 121.7, 72.3, 38.5). HRMS (CI): m/z calcd for C4H8BrO3S [M + H]+ 214.9372; found: 214.9372. This mesylate was directly utilized in the next step.
- 18 Darwish A, Chong JM. Synth. Commun. 2004; 34: 1885
Two illustrative examples of total syntheses are cited:
For related reagents described from our laboratory, see:
For a representative sampling of reports, featuring bifunctional allyl synthons, see:
For examples, see: