Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(02): 225-230
DOI: 10.1055/s-0036-1588895
DOI: 10.1055/s-0036-1588895
letter
Total Synthesis of (–)-Herbaric Acid through Organocatalyzed Asymmetric Halolactonization of Acrylate-Type Benzoic Acids
Further Information
Publication History
Received: 30 July 2016
Accepted after revision: 20 September 2016
Publication Date:
11 October 2016 (online)
Abstract
The total synthesis of (–)-herbaric acid has been achieved through the stereoselective synthesis of 3-substituted isobenzofuranones with a new organocatalytic route. When combined with a catalytic amount of benzoic acid, quinidine thiocarbamate based bifunctional catalysts have demonstrated their efficiency for the diastereoselective halolactonization reaction of acrylate-type benzoic acids bearing a chiral alkoxycarbonyl group on the carbon–carbon double bond. High diastereomeric excesses were obtained thanks to a positive match effect between the (+)-menthyl ester group and the chiral organocatalyst.
Key words
asymmetric organocatalysis - cinchona alkaloids - halolactonization reaction - 3-substituted isobenzofuranonesSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588895.
- Supporting Information
-
References and Notes
- 1a Beck JJ, Chou S.-C. J. Nat. Chem. 2007; 70: 891
- 1b Karmakar R, Pahari P, Mal D. Chem. Rev. 2014; 114: 6213
- 2a Sato H, Yorozu H, Yamaoka S. Biomed. Res. 1993; 14: 385
- 2b Zheng GQ, Zhang J, Kenney PM, Lam LK. T. ACS Symposium Series 546 . American Chemical Society; Washington DC: 1994: 230
- 2c Zhu XZ, Li X.-Y, Liu J. Eur. J. Pharmacol. 2004; 495: 221
- 2d Beck JJ, Chou S.-C. J. Nat. Prod. 2007; 70: 891
- 2e Lin G, Chan SS.-K, Chung H.-S, Li SL. Stud. Nat. Prod. Chem. 2005; 32: 611
- 3 Shode FA, Mahomed AS, Rogers CB. Phytochemistry 2002; 61: 955
- 4 Chae S.-H, Kim S.-I, Yeon S.-H, Lee S.-W, Ahn Y.-J. J. Agric. Food. Chem. 2011; 59: 8193
- 5 Palermo JA, Brasco MF. R, Spagnuolo C, Selde AM. J. Org. Chem. 2000; 65: 4482
- 6 Hoeller U, Gloer JB, Wicklow DT. J. Nat. Prod. 2002; 65: 876
- 7 Jadulco R, Brauers G, Edrada RA, Ebel R, Wray V, Proksch S, Proksch P. J. Nat. Prod 2002; 65: 730
- 8a Yeola SN, Mali RS. Indian J. Chem, Sect. B: Org. Chem. Incl. Med. Chem. 1986; 25: 804
- 8b Donati C, Prager RH, Weber B. Australian J. Chem. 1989; 42: 787
- 8c De Silva SO, Reed JN, Billedeau RJ, Wang X, Norris DJ, Snieckus V. Tetrahedron 1992; 48: 4863
- 8d Hosoya T, Kuriyama Y, Suzuki K. Synlett 1995; 635
- 8e Giurg M, Said SB, Syper L, Mlochowski J. Synth. Commun. 2001; 31: 3151
- 8f Giurg M, Syper L, Mlochowski J. Pol. J. Chem. 2004; 78: 231
- 8g Li G, Yin D, Liang X.-T. Synth. Commun. 2004; 34: 1183
- 8h Fan YC, Kwon O. Org. Lett. 2012; 14: 3264
- 8i Petrignet J, Inack Ngi S, Abarbri M, Thibonnet J. Tetrahedron Lett. 2014; 55: 982
- 8j Parida KN, Moorthy JN. J. Org. Chem. 2015; 80: 8354
- 9a Choi PJ, Sperry J, Brimble MA. J. Org. Chem. 2010; 75: 7388
- 9b Youn SW, Song HS, Park JH. Org. Lett. 2014; 16: 1028
- 10a Luo J, Wang H, Zhong F, Kwiatkowski J, Xu L.-W, Lu Y. Chem. Commun. 2012; 48: 4707
- 10b Zhong F, Luo J, Chen G.-Y, Dou X, Lu Y. J. Am. Chem. Soc. 2012; 134: 10222
- 10c Luo J, Jiang C, Wang H, Xu L.-W, Lu Y. Tetrahedron Lett. 2013; 54: 5261
- 10d Luo J, Wang H, Zhong F, Kwiatkowski J, Xu L.-W, Lu Y. Chem. Commun. 2013; 49: 5775
- 11a Deniau E, Enders D, Couture A, Grandclaudon P. Tetrahedron: Asymmetry 2003; 14: 2253
- 11b Deniau E, Enders D, Couture A, Grandclaudon P. Tetrahedron: Asymmetry 2005; 16: 875
- 11c Lanblin M, Couture A, Deniau E, Grandclaudon P. Tetrahedron: Asymmetry 2008; 19: 111
- 11d Deniau E, Couture A, Grandclaudon P. Tetrahedron: Asymmetry 2008; 19: 2735
- 11e Agouridas V, Capet F, Couture A, Deniau E, Grandclaudon P. Tetrahedron: Asymmetry 2011; 22: 1441
- 12a Sallio R, Lebrun S, Schifano-Faux N, Goossens J.-F, Agbossou-Niedercorn F, Deniau E, Michon C. Synlett 2013; 1785
- 12b Lebrun S, Sallio R, Dubois M, Agbossou-Niedercorn F, Deniau E, Michon C. Eur. J. Org. Chem. 2015; 1995
- 13a Whitehead DC, Yousefi R, Jaganathan A, Borhan B. J. Am. Chem. Soc. 2010; 132: 3298
- 13b Zhang W, Zheng S, Liu N, Werness JB, Guzei L, Tang W. J. Am. Chem. Soc. 2010; 132: 3664
- 13c Zhou L, Tan CK, Jiang X, Chen F, Yeung Y.-Y. J. Am. Chem. Soc. 2010; 132: 15474
- 13d Veitch GE, Jacobsen EN. Angew. Chem. Int. Ed. 2010; 49: 7332
- 13e Murai K, Matsushita T, Nakamura A, Fukushima S, Shimura M, Fujioka H. Angew. Chem. Int. Ed. 2010; 49: 9174
- 13f Yousefi R, Whitehead DC, Mueller JM, Staples RJ, Borhan B. Org. Lett. 2011; 13: 608
- 13g Tan CK, Zhou L, Yeung Y.-Y. Org. Lett. 2011; 13: 2738
- 13h Whitehead DC, Fhaner M, Borhan B. Tetrahedron Lett. 2011; 52: 2288
- 13i Tan CK, Chen F, Yeung Y.-Y. Tetrahedron Lett. 2011; 52: 4892
- 13j Tan CK, Zhou L, Yeung Y.-Y. Synlett 2011; 1335
- 13k Chen J, Zhou L, Tan CK, Yeung Y.-Y. J. Org. Chem. 2012; 77: 999
- 13l Zhang W, Liu N, Schienebeck CM, Decloux K, Zheng S, Werness JB, Tang W. Chem. Eur. J. 2012; 18: 7296
- 13m Tungen JE, Nolsoe JM. J, Hansen TV. Org. Lett. 2012; 14: 5884
- 13n Ikeuchi K, Ido S, Yoshimura S, Asakawa T, Inai M, Hamashima Y, Kan T. Org. Lett. 2012; 14: 6016
- 13o Fang C, Paull DH, Hethcox JC, Shugrue CR, Martin SF. Org. Lett. 2012; 14: 6290
- 13p Paull DH, Fang C, Donald JR, Pansick AD, Martin SF. J. Am. Chem. Soc. 2012; 134: 11128
- 13q Jiang X, Tan CK, Zhou L, Yeung Y.-Y. Angew. Chem. Int. Ed. 2012; 51: 7771
- 13r Tan CK, Le C, Yeung Y.-Y. Chem. Commun. 2012; 48: 5793
- 13s Lee HJ, Kim DY. Tetrahedron Lett. 2012; 53: 6984
- 13t Armstrong A, Braddock DC, Jones AX, Clark S. Tetrahedron Lett. 2013; 54: 7004
- 13u Nakatsuji H, Sawamura Y, Sakakura A, Ishihara K. Angew. Chem. Int. Ed. 2014; 53: 6974
- 13v Murai K, Shimizu N, Fujioka H. Chem. Commun. 2014; 50: 12530
- 13w Wilking M, Daniliuc CG, Hennecke U. Synlett 2014; 25: 1701
- 13x Han X, Dong C, Zhou H.-B. Adv. Synth. Catal. 2014; 356: 1275
- 13y Egami H, Asada J, Sato K, Hashizume D, Kawato Y, Hamashima Y. J. Am. Chem. Soc. 2015; 137: 10132
- 14 Gelat F, Coffinet M, Lebrun S, Agbossou-Niedercorn F, Michon C, Deniau E. Tetrahedron: Asymmetry 2016; 27: 980
- 15 General Procedure for the Synthesis of Phthalides 9a–e and 3 To a solution of quinine thiocarbamate (QTC 2,4-OMe) or quinidine thiocarbamate (QDTC 4-OMe) (0.01 mmol, 10 mol%) and benzoic acid (0.02 mmol, 20 mol%) in toluene (6 mL) was added NBS or NIS (0.15 mmol, 1.5 equiv). The reaction mixture was cooled at –20 °C, then a solution of carboxylic acid 8a–e and 4 (0.1 mmol, 1 equiv) in CHCl3 (3 mL) was added dropwise. After 15 h at –20 °C the crude mixture was directly purified by column chromatography on silica gel to afford phthalides 9a–e and 3.
- 16 Masamune S, Choy W, Petersen JS, Sita LR. Angew. Chem., Int. Ed. Engl. 1985; 24: 1
- 17 Carmen Carreno M, Garcia Ruano JL, Sanz G, Toledo MA, Urbano A. Tetrahedron Lett. 1996; 37: 4081
- 18 Berini C, Lavergne A, Molinier V, Capet F, Deniau E, Aubry J.-M. Eur. J. Org. Chem. 2013; 1937
- 19 Experimental Procedure and Analytical Data for Compound 1 A solution of compound 2 (117 mg, 0.3 mmol, 1 equiv, 99% de) in CH2Cl2 (3 mL) under argon was cooled at –78°C. A 1 M solution of BBr3 (6 mL, 6 mmol, 20 equiv) was added dropwise. The reaction mixture was stirred at –78 °C for 1 h then at r.t. for 30 min. The reaction was cooled at –78 °C and quenched with 1 M HCl (8 mL). The two layers were separated. The aqueous layer was saturated with NaCl then extracted with EtOAc (3×). The organic layers were combined and dry over Na2SO4, filtered, and Et3N (2 mL) was added. The mixture was concentrated under vacuum and purified by column chromatography (CH2Cl2–MeOH = 90:10 to 70:30). EtOAc (20 mL) and 1 M HCl (10 mL) was added to the solid. The 2 layers were separated. The aqueous layer was saturated with NaCl then extracted with EtOAc (3×). The organic layers were combined and dry over Na2SO4, filtered, and concentrated to dryness to afford the pure (–)-herbaric acid (1, 34 mg, 0.15 mmol, 51% yield, 95% ee) as a white solid; mp 49–50 °C. 1H NMR (300 MHz, CDCl3): δ = 9.51 (br s, 1 H), 8.55 (br s, 1 H), 6.61 (dd, J = 1.6 and 1.0 Hz, 1 H), 6.41 (d, J = 1.6 Hz, 1 H), 5.75 (dd, J = 7.8 and 5.1 Hz, 1 H), 3.03 and 2.83 (AB part of ABX system, JAB = 16.7, JAX = 5.1 and JBX = 7.8 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 171.0, 170.2, 166.2, 158.7, 153.6, 104.6, 103.5, 102.2, 77.9, 39.7. HPLC: t R (R, minor) = 54.9 min, t R (S, major) = 57.9 min [Regis (S,S)-Whelk 01TM CSP; flow rate = 0.8 mL min–1; hexane–EtOH (90:10) + 0.1% AcOH; 25 °C, 213 nm). [α]D 20 –29.1 (c 1.6, MeOH).
- 20 CCDC 1475859 for 3 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.