Synthesis 2017; 49(10): 2257-2265
DOI: 10.1055/s-0036-1588934
paper
© Georg Thieme Verlag Stuttgart · New York

Mannich N-Indolylmethylation of Amino Acids

Michael Wiedemann
Department Chemie and TUM Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85748 Garching bei München, Germany   Email: lukas.hintermann@tum.de
,
Philipp J. Altmann
Department Chemie and TUM Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85748 Garching bei München, Germany   Email: lukas.hintermann@tum.de
,
Lukas Hintermann*
Department Chemie and TUM Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85748 Garching bei München, Germany   Email: lukas.hintermann@tum.de
› Author Affiliations
Further Information

Publication History

Received: 20 October 2016

Accepted after revision: 20 December 2016

Publication Date:
31 January 2017 (online)


Abstract

Unprotected amino acids and simple peptides (2 examples) with free amino groups are N-indol-3-ylmethylated by a combination of paraformaldehyde or formalin and indole in aqueous ethanol at temperatures from 55–75 °C. Secondary amine incorporating amino acids and primary amine functionalized α-branched amino acids give rise to N-monoalkylation products, whereas unbranched primary amine functionalized amino acids and alanine give N,N-dialkylated products. The modified amino acids are amenable to amide coupling. Other electron-rich (hetero)aromatic cores besides indole (pyrrole, naphthol) are also selectively aminomethylated by amino acids and formaldehyde.

Supporting Information

 
  • References

  • 1 Aurelio L, Hughes AB In Amino Acids, Peptides and Proteins in Organic Chemistry . Vol. 1. Hughes AB. Wiley-VCH; Weinheim: 2010: 245
    • 2a Snyder HR, Matteson DS. J. Am. Chem. Soc. 1957; 79: 2217
    • 2b Kühn H, Stein O. Ber. Dtsch. Chem. Ges. 1937; 70: 567
    • 3a Cymerman Craig J, Johns SR, Moyle M. J. Org. Chem. 1963; 28: 2779
    • 3b Short JH, Ours CW. J. Heterocycl. Chem. 1975; 12: 869
    • 3c Agababyan AG, Gevorgyan GA, Mndzhoyan OL. Russ. Chem. Rev. 1982; 51: 387
  • 4 Afsah E.-SM, Jackson AH. J. Chem. Soc., Perkin Trans. 1 1984; 1929
  • 5 Sánchez JD, Ramos MT, Avendaño C. Tetrahedron 1998; 54: 969
    • 6a Akué-Gédu R, Couturier D, Hénichart J.-P, Rigo B, Sanz G, Van Hijfte L, Bourry A. Tetrahedron 2012; 68: 1117
    • 6b Gilleron P, Millet R, Houssin R, Wlodarczyk N, Farce A, Lemoine A, Goossens J.-F, Chavatte P, Pommery N, Hénichart J.-P. Eur. J. Med. Chem. 2006; 41: 745
    • 6c Bourry A, Akué-Gédu R, Rigo B, Hénichart J.-P, Sanz G, Couturier D. J. Heterocycl. Chem. 2003; 40: 989
    • 6d Mutulis F, Mutule I, Wikberg JE. S. Bioorg. Med. Chem. Lett. 2002; 12: 1039
    • 6e Rigo B, Fossaert E, De Quilacq J, Kolocouris N. J. Heterocycl. Chem. 1984; 21: 1381
  • 7 CCDC 1508897 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. Also see the Supporting Information for methodology of the structure collection.
  • 8 Gawdzik B, Iwanek W. Tetrahedron: Asymmetry 2005; 16: 2019
  • 9 Möhrle H, Tröster K. Arch. Pharm. (Weinheim, Ger.) 1982; 315: 619
  • 10 König W, Geiger R. Chem. Ber. 1970; 103: 788