Synlett 2018; 29(05): 571-575
DOI: 10.1055/s-0036-1589151
letter
© Georg Thieme Verlag Stuttgart · New York

Facile Synthesis of β-Keto Sulfones Employing Fenton’s Reagent in DMSO

Petrakis N. Chalikidi
a   K. L. Khetagurov North Ossetian State University, Vatutina St. 46, 362025 Vladikavkaz, Russian Federation   Email: hampazero@mail.ru
,
Maxim G. Uchuskin
b   Perm State University, Bukireva 15, 614990 Perm, Russian Federation
,
Igor V. Trushkov
c   Faculty of Science, RUDN University, Miklukho-Maklaya 6, 117198 Moscow, Russian Federation
,
Vladimir T. Abaev*
a   K. L. Khetagurov North Ossetian State University, Vatutina St. 46, 362025 Vladikavkaz, Russian Federation   Email: hampazero@mail.ru
,
Olga V. Serdyuk*
d   Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Henkestrasse 42, 91054 Erlangen, Germany   Email: oserduke@mail.ru
› Author Affiliations
The authors thank the Russian Foundation for Basic Research (Grant No. 16-03-00807) for financial support.
Further Information

Publication History

Received: 26 October 2017

Accepted after revision: 16 November 2017

Publication Date:
02 January 2018 (online)


Dedicated to the memory of Professor Alexander V. Butin, colleague and close friend

Abstract

A new facile method for the synthesis of β-keto sulfones employing xanthates, DMSO, and Fenton’s reagent is described. The reaction proceeds under very mild conditions providing a cost-effective straightforward approach to various β-keto sulfones in high yields.

Supporting Information

 
  • References and Notes


    • For selected recent reviews on synthesis and application of β-keto sulfones, see:
    • 1a Markitanov YM. Timoshenko VM. Shermolovich YG. J. Sulfur Chem. 2013; 35: 188
    • 1b Pena J. Moro RF. Markos IS. Diez D. Curr. Org. Chem. 2014; 18: 2972
    • 1c Elattar KM. Fekri A. Bayoumy NM. Fadda AA. Res. Chem. Intermed. 2017; 43: 4227
  • 2 Kumar A. Sharma S. Tripathi VD. Srivastava S. Tetrahedron 2010; 66: 9445
    • 3a Macro JL. Fernandez I. Khira N. Fernandez P. Romero A. J. Org. Chem. 1995; 60: 6678
    • 3b Macro JL. J. Org. Chem. 1997; 62: 6575
  • 4 Ihara M. Suzuki S. Taniguchi T. Tokunaga Y. Fukumoto K. Tetrahedron 1995; 51: 9873
  • 5 Swenson RE. Sowin TJ. Zhang HQ. J. Org. Chem. 2002; 67: 9182
  • 6 Chang M.-Y. Cheng Y.-C. Lu Y.-J. Org. Lett. 2015; 17: 3142
  • 7 Zhang X. Dai W. Wu W. Cao S. Org. Lett. 2015; 17: 2708
  • 8 Saraiva MT. Costa GP. Seus N. Schumacher RF. Perin G. Paixão MW. Luque R. Alves D. Org. Lett. 2015; 17: 6206

    • For selected examples, see:
    • 9a Timoshenko VM. Markitanov YM. Salimov YO. Shermolovich YG. Arkivoc 2014; (vi): 86
    • 9b Pandey G. Vaitla J. Org. Lett. 2015; 17: 4890
    • 9c Chang M.-Y. Chen Y.-H. Cheng Y.-C. Tetrahedron 2016; 72: 518
    • 9d Chan C.-K. Chen Y.-H. Hsu R.-T. Chang M.-Y. Tetrahedron 2017; 73: 46
  • 10 Wolf WM. J. Mol. Struct. 1999; 474: 113
  • 11 Curti C. Laget M. Carle AO. Gellis A. Vanelle P. Eur. J. Med. Chem. 2007; 42: 880
    • 12a Xiang J. Ipek M. Suri V. Tam M. Xing Y. Huang N. Zhang Y. Tobin J. Mansour TS. McKew J. Bioorg. Med. Chem. 2007; 15: 4396
    • 12b Spallarossa A. Caneva C. Caviglia M. Alfei S. Butini S. Campiani G. Gemma S. Brindisi M. Zisterer DM. Bright SA. Williams CD. Crespan E. Maga G. Sanna G. Delogu I. Collu G. Loddo R. Eur. J. Med. Chem. 2015; 102: 648
    • 12c Sundermann T. Fabian J. Hanekamp W. Lehr M. Bioorg. Med. Chem. 2015; 23: 2579

      For selected examples, see:
    • 13a Vennstra GE. Zwaneburg B. Synthesis 1975; 519
    • 13b Suryakiran N. Reddy TS. Ashalatha K. Lakshman M. Venkateswarlu Y. Tetrahedron Lett. 2006; 3853
    • 13c Kong HI. Crichton JE. Manthorpe JM. Tetrahedron Lett. 2011; 52: 3714
    • 13d Pan X.-J. Gao J. Yuan G.-Q. Tetrahedron 2015; 71: 5525
    • 13e Shin US. Joo S.-R. Kim S.-H. Bull. Kor. Chem. Soc. 2016; 37: 1144

      For selected examples, see:
    • 14a Grosset SJ. Dubey PK. Gill GH. Cameron ST. Gardner PA. Can. J. Chem. 1984; 62: 798
    • 14b Katritzky AR. Abdel-Fattah AA. A. Wang M. J. Org. Chem. 2003; 68: 1443
    • 14c Pospíšil J. Sato H. J. Org. Chem. 2011; 76: 2269
    • 14d Pospiil J. Robiette R. Sato H. Debrus K. Org. Biomol. Chem. 2012; 10: 1225

      For selected examples, see:
    • 15a Griffin RJ. Henderson A. Curtin NJ. Echalier A. Endicott JA. Hardcastle IR. Newell DR. Noble ME. M. Wang LZ. Golding BT. J. Am. Chem. Soc. 2006; 128: 6012
    • 15b Bahrami K. Khodaei MM. Arabi MS. J. Org. Chem. 2010; 75: 6208
    • 15c Li Q.-S. Li C.-Y. Lu X. Zhang H. Zhu H.-L. Eur. J. Med. Chem. 2012; 50: 288
    • 16a Samakkanad N. Katrun P. Techajaroonjit T. Hlekhlai S. Pohmakotr M. Reutrakul V. Jaipetch T. Soorukram D. Kuhakarn C. Synthesis 2012; 44: 1693
    • 16b Jiang Y. Loh T.-P. Chem. Sci. 2014; 5: 4939
    • 16c Wei W. Wen J. Yang D. Wu M. You J. Wang H. Org. Biomol. Chem. 2014; 12: 7678
    • 16d Taniguchi N. J. Org. Chem. 2015; 80: 7797
    • 16e Yadav VK. Srivastava VP. Yadav LD. S. Synlett 2016; 27: 427
    • 16f Shao A. Gao M. Chen S. Wang T. Lei A. Chem. Sci. 2017; 8: 2175
    • 17a Lai C. Xi C. Jiang Y. Hua R. Tetrahedron Lett. 2005; 46: 513
    • 17b Lu Q. Zhang J. Zhao G. Qi Y. Wang H. Lei A. J. Am. Chem. Soc. 2013; 135: 11481
    • 17c Sreedhar B. Rawat VS. Synlett 2012; 23: 413
    • 17d Handa S. Fennewald JC. Lipshutz BH. Angew. Chem. Int. Ed. 2014; 53: 3432
    • 17e Singh AK. Chawla R. Yadav LD. S. Tetrahedron Lett. 2014; 55: 2845
  • 18 Rawat VS. Reddy PL. M. Sreedhar B. RSC Adv. 2014; 4: 5165
  • 19 Chalikidi PN. Nevolina TA. Uchuskin MG. Abaev VT. Butin AV. Chem. Heterocycl. Compd. 2015; 51: 621
  • 20 For review on application of DMSO as reagent, see: Wu X.-F. Natteb K. Adv. Synth. Catal. 2016; 358: 336
    • 21a Bertilsson BM. Gustafsson B. Kühn I. Torssell K. Acta Chem. Scand. 1970; 24: 3590
    • 21b Gilbert B. Norman R. Sealy R. J. Chem. Soc., Perkin Trans. 2 1975; 303
    • 21c Veltwisch D. Jamata E. Asmus KD. J. Chem. Soc., Perkin Trans. 2 1980; 146
    • 21d Eberhart MK. Colina R. J. Org. Chem. 1988; 53: 1071
  • 22 Representative Experimental Procedure for the Synthesis of Compound 3a 34% H2O2 (2 mL, 20 mmol) was added to a cooled solution of FeSO4·7Н2О (2.78 g, 10 mmol) in DMSO (40 mL), and the mixture was stirred for 30 min at 5–10 °C. Then, xanthate 1a (2.4 g, 10 mmol), FeSO4·7Н2О (2.78 g, 10 mmol), and H2O2(2 mL, 20 mmol) were added and the reaction mixture was stirred for 30 min at 5–10 °C and, then, 2 h at r.t. (TLC control). The reaction mixture was poured into H2O (30 mL) and extracted with EtOAc (4 × 50 mL). The combined organic phases were washed with brine, dried over anhydrous Na2SO4, filtered, and evaporated under reduced pressure. The resulting crude mixture of products was purified by silica column chromatography using EtOAc–PE (1:4) as eluents. The yield of compound 3a was 1.71 g (86%). Characterization Data of Representative Compounds 3
    2-(Methylsulfonyl)-1-phenylethanone (3a) 23
    Pale yellow solid (1.71 g, isolated yield 86%); mp 107–109 °C (PE–EtOAc = 2:1), lit. 86–90 °C.23 1H NMR (400 MHz, DMSO-d 6): δ = 8.10–7.97 (m, 2 H), 7.72 (m, 1 H), 7.58 (dd, J = 10.7, 4.9 Hz, 2 H), 5.11 (s, 2 H), 3.16 (s, 3 H) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 190.59, 136.34, 134.75, 129.50, 129.31, 61.23, 42.51 ppm. ESI-HRMS: m/z calcd for C9H10O3SNa [M + Na]+: 221.0248; found: 221.0242. Ethyl 2-(Methylsulfonyl)acetate (3l)24 Colorless oil (1.295 g, isolated yield 78%). 1H NMR (400 MHz, CDCl3): δ = 4.25 (q, J = 7.1 Hz, 2 H), 3.99 (s, 2 H), 3.12 (s, 3 H), 1.29 (t, J = 7.1 Hz, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 163.10, 62.65, 59.12, 41.62, 13.95 ppm. ESI-HRMS: m/z calcd for C5H10O3SNa [M + Na]+: 189.0197; found: 189.0189.
  • 23 Shi X. Ren X. Ren Z. Li J. Wang Y. Yang S. Gu J. Gao Q. Huang G. Eur. J. Org. Chem. 2014; 5083
  • 24 Lattanzi A. Bonadies F. Schiavo A. Scettri A. Tetrahedron: Asymmetry 1998; 9: 2619