Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(04): 503-508
DOI: 10.1055/s-0036-1590939
DOI: 10.1055/s-0036-1590939
letter
Selective 7-endo-Cyclization of 3-Aza-5-alkenols through Oxidative Pd(II)-Catalyzed Olefin Oxyarylation
Università degli Studi dell’Insubria and Università degli Studi di Milano are acknowledged for financial support. Support through CMST COST Action, CA15106 (CHAOS) is also gratefully acknowledged.Further Information
Publication History
Received: 31 August 2017
Accepted after revision: 04 October 2017
Publication Date:
08 November 2017 (online)
Abstract
3-Aza-5-alkenols undergo selective 7-endo-trig cyclization when treated with a catalytic Pd(II) species, CuCl2 and ArSnBu3 giving 7-aryl-substituted oxazepanes. The intramolecular alkoxylation occurs with formation of a seven-membered ring only when associated with an arylating step. Otherwise, 6-exo-trig reactions, providing morpholine derivatives, were observed.
Key words
palladium - heterocycles - domino reactions - Wacker reaction - homogeneous catalysis - cyclization - oxyarylationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1590939.
- Supporting Information
-
References and Notes
- 1a Yang L. Huang H. Chem. Rev. 2015; 115: 3468
- 1b Huang H. Ji X. Wu W. Jiang H. Chem. Soc. Rev. 2015; 44: 155
- 1c Butt NA. Zhang W. Chem. Soc. Rev. 2015; 44: 7929
- 1d Liu C. Yuan J. Gao M. Tang S. Li W. Shi R. Lei A. Chem. Rev. 2015; 115: 12138
- 1e Chen F. Wang T. Jiao N. Chem. Rev. 2014; 114: 8613
- 1f Yamamoto Y. Chem. Rev. 2012; 112: 4736
- 1g Marinetti A. Jullien H. Voituriez A. Chem. Soc. Rev. 2012; 41: 4884
- 1h Liu C. Zhang H. Shi W. Lei A. Chem. Rev. 2011; 111: 1780
- 1i Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
- 1j Zhang M. Adv. Synth. Catal. 2009; 351: 2243
- 2a McDonald RI. Liu G. Stahl SS. Chem. Rev. 2011; 111: 2981
- 2b Le Bras J. Muzart J. Chem. Rev. 2011; 111: 1170
- 2c Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147
- 2d Jensen KH. Sigman MS. Org. Biomol. Chem. 2008; 6: 4083
- 2e Beccalli EM. Broggini G. Martinelli M. Sottocornola S. Chem. Rev. 2007; 107: 5318
- 2f Kotov V. Scarborough CC. Stahl SS. Inorg. Chem. 2007; 46: 1910
- 2g Knölker H.-J. Chem. Lett. 2009; 38: 8
- 3a Tietze LF. Chem. Rev. 1996; 96: 115
- 3b Poli G. Giambastiani G. Heumann A. Tetrahedron 2000; 56: 5959
- 3c Pellissier H. Chem. Rev. 2013; 113: 442
- 3d Clavier H. Pellissier H. Adv. Synth. Catal. 2012; 354: 3347
- 3e Mayer SF. Kroutil W. Faber K. Chem. Soc. Rev. 2001; 30: 332
- 3f Vlaar T. Ruijter E. Orru VA. Adv. Synth. Catal. 2011; 353: 809
- 3g Broggini G. Borelli T. Giofré S. Mazza A. Synthesis 2017; 49: 2803
- 4a Beccalli EM. Broggini G. Gazzola S. Mazza A. Org. Biomol. Chem. 2014; 12: 6767
- 4b Knölker H.-J. Fröhner W. Reddy KR. Synthesis 2002; 557
- 4c Krahl MP. Jäger A. Krause T. Knölker H.-J. Org. Biomol. Chem. 2006; 4: 3215
- 5a Ayyagari N. Belani JD. Synlett 2014; 25: 2350
- 5b Cheng X.-F. Li Y. Su Y.-M. Yin F. Wang J.-Y. Sheng J. Vora HU. Wang X.-S. Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 1236
- 5c Wei Y. Yoshikai N. Org. Lett. 2011; 13: 5504
- 5d Fujino D. Hayashi S. Yorimitsu H. Oshima K. Chem. Commun. 2009; 5754
- 5e Trend RM. Ramtohul YK. Ferreira EM. Stoltz BM. Angew. Chem. Int. Ed. 2003; 42: 2892
- 5f Muñiz K. Adv. Synth. Catal. 2004; 346: 1425
- 5g Uenishi J. Ohmi M. Angew. Chem. Int. Ed. 2005; 44: 2756
- 5h Yamamoto T. Matsuda H. Utsumi Y. Hagiwara T. Kanisawa T. Tetrahedron Lett. 2002; 43: 9077
- 6a Chen P.-Y. Huang K.-S. Tsai C.-C. Wang T.-P. Wang E.-C. Org. Lett. 2012; 14: 4930
- 6b Alonso F. Sanchez D. Soler T. Yus M. Adv. Synth. Catal. 2008; 350: 2118
- 6c Szolcsanyi P. Gracza T. Chem. Commun. 2005; 3948
- 6d Alladoum J. Vrancken E. Mangeney P. Roland S. Kadouri-Puchot C. Org. Lett. 2009; 11: 3746
- 6e Asao N. Chan CS. Takahashi K. Yamamoto Y. Tetrahedron 2005; 61: 11322
- 6f Watanabe K. Iwata Y. Adachi S. Nishikawa T. Yoshida Y. Kameda S. Ide M. Saikawa Y. Nakata M. J. Org. Chem. 2010; 75: 5573
- 6g Le Bras J. Muzart J. Chem. Soc. Rev. 2014; 43: 3003
- 6h Alcaide B. Almendros P. Rodriguez-Acebes R. J. Org. Chem. 2006; 71: 2346
- 7a Borelli T. Brenna S. Broggini G. Oble J. Poli G. Adv. Synth. Catal. 2017; 359: 623
- 7b Gazzola S. Beccalli EM. Borelli T. Castellano C. Chiacchio MA. Diamante D. Broggini G. J. Org. Chem. 2015; 80: 7226
- 7c Broggini G. Poli G. Beccalli EM. Brusa F. Gazzola S. Oble J. Adv. Synth. Catal. 2015; 357: 677
- 7d Broggini G. Barbera V. Beccalli EM. Chiacchio U. Fasana A. Galli S. Gazzola S. Adv. Synth. Catal. 2013; 355: 1640
- 7e Broggini G. Borsini E. Fasana A. Poli G. Liron F. Eur. J. Org. Chem. 2012; 3617
- 7f Borsini E. Broggini G. Fasana A. Galli S. Khansaa M. Piarulli U. Rigamonti M. Adv. Synth. Catal. 2011; 353: 985
- 8 Broggini G. Beccalli EM. Borsini E. Fasana A. Zecchi G. Synlett 2011; 227
- 9 Parrish JP. Jung YC. Shin SI. Jung KW. J. Org. Chem. 2002; 67: 7127
- 10a Andappan MM. S. Nilsson P. von Schenck H. J. Org. Chem. 2004; 69: 5212
- 10b Jung JC. Mishra RK. Yoon CH. Jung KW. Org. Lett. 2003; 5: 2231
- 10c Du X. Suguro M. Hirabayashi K. Mori A. Org. Lett. 2001; 3: 3313
- 10d Yoo KS. Yoon CH. Jung KW. J. Am. Chem. Soc. 2006; 128: 16384
- 10e Zhu C. Falck JR. Angew. Chem. Int. Ed. 2011; 50: 6626
- 11 Zheng J. Huang L. Huang C. Wu W. Jiang H. J. Org. Chem. 2015; 80: 1235
- 12 General Procedure for the 7-endo-trig Oxyarylation process A mixture of N-allylaminoalcohol 1 (1.0 equiv), PdCl2(CH3CN)2 (0.1 equiv), CuCl2 (1.0 equiv), and PhSnBu3 (1.0 equiv) in THF (0.2 M) was stirred at room temperature for 18–24 h. Then the solvent was evaporated under reduced pressure, and water (10 mL) was added. The aqueous layer was extracted with CH2Cl2 (3 × 10 mL), and the organic layers were dried over Na2SO4, filtered, and concentrated under reduced pressure. The crude product was purified by silica column chromatography to afford the corresponding oxazepane 3.
- 13 Spectroscopic Data of 7-Phenyl-4-(4-nitrobenzenesulfonyl)-1,4-oxazepane (3b) 1H NMR (400 MHz, CDCl3): δ = 1.92–2.03 (m, 1 H), 2.24–2.31 (m, 1 H), 3.27 (ddd, J = 13.2, 10.0, 2.8 Hz, 1 H), 3.35–3.42 (m, 1 H), 3.54–3.59 (m, 1 H), 3.67 (dt, J = 13.6, 2.8 Hz, 1 H), 3.73 (ddd, J = 12.4, 7.6, 4.4 Hz, 1 H), 4.08 (dt, J = 13.2, 3.2 Hz, 1 H), 4.62 (dd, J = 9.6, 4.4 Hz, 1 H), 7.14–7.28 (m, 5 H), 7.94 (d, J = 8.4, 2 H), 8.33 (d, J= 8.4 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 37.9 (t), 46.3 (t), 51.7 (t), 69.9 (t), 81.6 (d), 124.5 (d), 125.5 (d), 127.6 (d), 128.1 (d), 128.5 (d), 142.4 (s), 149.9 (s), 150.0 (s). MS: m/z = 362 [M+]. Anal. Calcd for C17H18N2O5S: C, 56.34; H, 5.01; N, 7.73. Found: C, 56.11; H, 5.27; N, 7.48.
- 14 CCDC 1519865 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 15a Semmelhack MF. Bodurow C. J. Am. Chem. Soc. 1984; 106: 1496
- 15b Semmelhack MF. Zhang N. J. Org. Chem. 1989; 54: 4483
- 15c Liu C. Widenhoefer RA. J. Am. Chem. Soc. 2004; 126: 10250
- 16a Lai J.-Y. Shi X.-X. Gong Y.-S. Dai L.-X. J. Org. Chem. 1993; 58: 4775
- 16b Broggini G. Beccalli EM. Borelli T. Brusa F. Gazzola S. Mazza A. Eur. J. Org. Chem. 2015; 4261
- 17 Michael FE. Sibbald PA. Cochran BM. Org. Lett. 2008; 10: 793
- 18 Broggini G. Barbera V. Beccalli EM. Borsini E. Galli S. Lanza G. Zecchi G. Adv. Synth. Catal. 2012; 354: 159
- 19a Rajabi J. Lorion MM. Ly VL. Liron F. Oble J. Prestat G. Poli G. Chem. Eur. J. 2014; 20: 1539
- 19b Manick AD. Duret G. Tran DN. Berhal F. Prestat G. Org. Chem. Front. 2014; 1: 1058
- 19c Martínez C. Wu Y. Weinstein AB. Stahl SS. Liu G. Muñiz K. J. Org. Chem. 2013; 78: 6309
- 19d Alexanian EJ. Lee C. Sorensen EJ. J. Am. Chem. Soc. 2005; 127: 7690
- 20 Spectroscopic Data of 7-[4-(Benzyloxy)phenyl]-4-(4-methylbenzenesulfonyl)-1,4-oxazepane (10) 1H NMR (400 MHz, CDCl3): δ = 1.93–1.99 (m, 1 H), 2.16–2.21 (m, 1 H), 2.37 (s, 3 H), 3.15–3.19 (m, 1 H), 3.23–3.29 (m, 1 H), 3.48–3.54 (m, 1 H), 3.58–3.70 (m, 2 H), 3.99 (dt, J = 12.8, 2.9 Hz, 1 H), 4.54 (dd, J = 5.6, 9.6 Hz, 1 H), 4.97 (s, 2 H), 6.85 (d, J = 8.1 Hz, 2 H), 7.12 (d, J = 8.1 Hz, 2 H), 7.24–7.35 (m, 7 H), 7.63 (d, J = 8.1 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 21.5 (q), 37.6 (t), 46.2 (t), 51.7 (t), 69.8 (t), 70.0 (t), 81.1 (d), 114.8 (d), 126.9 (d), 127.0 (d), 127.4 (d), 127.9 (d), 128.6 (d), 129.8 (d), 135.3 (s), 135.9 (s), 136.9 (s), 143.4 (s), 158.1 (s). MS: m/z = 437 [M+]. Anal. Calcd for C25H27NO4S: C, 68.63; H, 6.22; N, 3.20. Found: C, 68.74; H, 5.98; N, 3.47.
- 21a Kalyani D. Sanford MS. J. Am. Chem. Soc. 2008; 130: 2150
- 21b Kalyani D. Satterfield AD. Sanford MS. J. Am. Chem. Soc. 2010; 132: 8419
- 22 For the transmetalation process between Bu3SnAr and palladium(II) species, see: Stille JK. Angew. Chem., Int. Ed. Engl. 1986; 25: 508
- 23a Tamaru Y. Hojo M. Higashimura H. Yoshida Z.-I. Angew. Chem. Int. Ed. Engl. 1986; 25: 735
- 23b Gligorich KM. Cummings SA. Sigman MS. J. Am. Chem. Soc. 2007; 129: 14193
- 23c Urkalan KB. Sigman MS. Angew. Chem. Int. Ed. 2009; 48: 3146
- 23d Werner EW. Urkalan KB. Sigman MS. Org. Lett. 2010; 12: 2848
- 23e Satterfield AD. Kubota A. Sanford MS. Org. Lett. 2011; 13: 1076
For selected examples of intramolecular oxidative Pd-catalyzed C–O bond formation on alkenes, see:
For selected examples of intramolecular oxidative Pd-catalyzed domino reactions on alkenes, see:
For selected examples of analogous reactions on alkynes, see:
For selected examples of analogous reactions on allenes, see: