Synlett 2018; 29(05): 603-608
DOI: 10.1055/s-0036-1591838
letter
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Construction and Transformations of Poly­functionalized 3,4-Dihydro-2H-thiopyrano[2,3-b]quinolines

Jia-Wen Zhang
Department of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, P. R. of China   Email: xiejw@zjnu.cn
,
Li-Si-Han Yu
Department of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, P. R. of China   Email: xiejw@zjnu.cn
,
Jian-Lian Dong
Department of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, P. R. of China   Email: xiejw@zjnu.cn
,
Qi-Chao Sun
Department of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, P. R. of China   Email: xiejw@zjnu.cn
,
Department of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, P. R. of China   Email: xiejw@zjnu.cn
› Author Affiliations
We are grateful for financial support from the National Natural Science Foundation of China (21272214).
Further Information

Publication History

Received: 18 September 2017

Accepted after revision: 29 October 2017

Publication Date:
11 December 2017 (online)


Abstract

We developed an enantioselective organocascade Michael/Henry reaction in the presence of a bifunctional organocatalyst to construct chiral polyfunctionalized 3,4-dihydro-2H-thiopyrano[2,3-b]quinolines. The resulting optically active products with three contiguous stereocenters, one quaternary and two tertiary, were obtained in moderate to good yields and with good to excellent enantioselectivities. Remarkably, the resulting products were readily converted into polyfunctionalized optically active furo[2′,3′:4,5]thiopyrano[2,3-b]quinoline, 3,4-dihydro-2H-thiopyrano[2,3-b]quinoline 1-oxide and 2,3-dihydro-4H-thiopyrano[2,3-b]quinolin-4-one derivatives.

Supporting Information

 
  • References and Notes


    • For selected examples of the Michael/Henry reaction
    • 1a Zu L. Xie H. Li H. Wang J. Jiang W. Wang W. Adv. Synth. Catal. 2007; 349: 1882
    • 1b Zu L. Wang J. Li H. Xie H. Jiang W. Wang W. J. Am. Chem. Soc. 2007; 129: 1036
    • 1c Wang J. Xie H. Li H. Zu L. Wang W. Angew. Chem. Int. Ed. 2008; 47: 4177
    • 1d Dodda R. Goldman JJ. Mandel T. Zhao C.-G. Broker GA. Tiekink ER. T. Adv. Synth. Catal. 2008; 350: 537
    • 1e Fukamizu K. Miyake Y. Nishibayashi Y. J. Am. Chem. Soc. 2008; 130: 10498
    • 1f Gao Y. Ren Q. Wu H. Li M. Wang J. Chem. Commun. 2010; 46: 9232
    • 1g Dong X.-Q. Fang X. Tao H.-Y. Zhou X. Wang C.-J. Chem. Commun. 2012; 48: 7238
    • 1h Yang Y. Du D. Chin. J. Chem. 2014; 32: 853
    • 1i Arai T. Yamamoto Y. Org. Lett. 2014; 16: 1700
    • 1j Arai T. Suzuki T. Inoue T. Kuwano S. Synlett 2017; 28: 122
    • 2a Lesher GY. Froelich EJ. Gruett MD. Bailey JH. Brundage RP. J. Med. Pharm. Chem. 1962; 91: 1063
    • 2b Srivastava SK. Jha A. Agarwal SK. Mukherjee R. Burman AC. Anti-Cancer Agents Med. Chem. 2007; 7: 685
    • 2c Solomon VR. Lee H. Curr. Med. Chem. 2011; 18: 1488
    • 2d Sato M. Motomura T. Aramaki H. Matsuda T. Yamashita M. Ito Y. Kawakami H. Matsuzaki Y. Watanabe W. Yamataka K. Ikeda S. Kodama E. Matsuoka M. Shinkai H. J. Med. Chem. 2006; 49: 1506
    • 2e Yeboah EM. O. Yeboah SO. Singh GS. Tetrahedron 2011; 67: 1725
    • 3a Lesage AS. J. Bischoff FP. Janseen CG. M. Lavreysen H. WO 03082350, 2003
    • 3b Mulchin BJ. Newton CG. Baty JW. Grasso CH. Martin WJ. Walton MC. Dangerfield EM. Plunkett CH. Berridge MV. Harper JL. Timmer MS. M. Stocker BL. Bioorg. Med. Chem. 2010; 18: 3238
    • 3c Kidwai M. Bhushan KR. Sapra P. Saxena RK. Gupta R. Bioorg. Med. Chem. 2000; 8: 69
    • 3d Quaglia W. Pigini M. Piergentili A. Giannella M. Gentili F. Marucci G. Carrieri A. Carotti A. Poggesi E. Leonardi A. Melchiorre C. J. Med. Chem. 2002; 45: 1633
    • 3e van Vliet LA. Rodenhuis N. Dijkstra D. Wikström H. Pugsley TA. Serpa KA. Meltzer L. Heffner TG. Wise LD. Lajiness ME. Huff RM. Svensson K. Sundell S. Lundmark M. J. Med. Chem. 2000; 43: 2871
    • 3f Shiraki H. Kozar MP. Melendez V. Hudson TH. Ohrt C. Magill AJ. Lin AJ. J. Med. Chem. 2011; 54: 131
    • 3g Kaur K. Jain M. Reddy RP. Jain R. Eur. J. Med. Chem. 2010; 45: 3245
  • 4 Wu L. Wang Y. Song H. Tang L. Zhou Z. Tang C. Adv. Synth. Catal. 2013; 355: 1053
  • 5 Ping X.-N. Wei P.-S. Zhu X.-Q. Xie J.-W. J. Org. Chem. 2017; 82: 2205
    • 6a Zeng X.-M. Xie J.-W. J. Org. Chem. 2016; 81: 3553
    • 6b Zeng X.-M. Meng C.-Y. Bao J.-X. Xu D.-C. Xie J.-W. Zhu W.-D. J. Org. Chem. 2015; 80: 11521
  • 7 Xie J.-W. Wang Z. Yang W.-J. Kong L.-C. Xu D.-C. Org. Biomol. Chem. 2009; 7: 4352
    • 8a Itoh K. Kishimoto S. Sagi K. Can. J. Chem. 2009; 87: 760
    • 8b Ganesh M. Namboothiri IN. N. Tetrahedron 2007; 63: 11973
    • 8c Muruganantham R. Mobin SM. Namboothiri IN. N. Org. Lett. 2007; 9: 1125
    • 8d McCooey SH. McCabe T. Connon SJ. J. Org. Chem. 2006; 71: 7494
    • 8e O’Neil IA. Cleator E. Southern JM. Bickley JF. Tapolczay DJ. Tetrahedron Lett. 2001; 42: 8251
    • 8f Itoh K. Kishimoto S. New J. Chem. 2000; 24: 347
    • 8g Sheremet EA. Tomanov RI. Trukhin EV. Berestovitskaya VM. Russ. J. Org. Chem. 2004; 40: 594
  • 9 (2R,3R,4R)-3-Bromo-3-nitro-2-phenyl-3,4-dihydro-2H-thiopyrano[2,3-b]quinolin-4-ol (3aa): Typical Procedure A mixture of 2-mercaptoquinoline-3-carbaldehyde (1a; 19.0 mg 0.10 mmol), α-bromonitroalkene 2a (27 mg, 0.12 mmol), and catalyst C2 (9.0 mg, 0.02 mmol) in CHCl3 (2 mL) was stirred at –30 °C for 16 h. The product was then purified directly by flash chromatography (silica gel, 15% EtOAc–PE) to give a white solid; yield: 30 mg (78%, 95% ee); mp 193–194 °C; [α]D 25 +33.21 (c 0.5, THF). HPLC: Chiralpak OD column (15% i-PrOH–hexane, 1 mL/min); t major = 21.89 min, t minor = 13.16 min. 1H NMR (600 MHz, DMSO-d 6): δ = 8.42 (s, 1 H), 8.05 (d, J = 8.0 Hz, 1 H), 7.88 (d, J = 8.4 Hz, 1 H), 7.77 (t, J = 7.3 Hz, 1 H), 7.57 (dd, J = 9.7, 3.8 Hz, 3 H), 7.47 (dt, J = 19.06, 6.6 Hz, 4 H), 6.24 (s, 1 H), 6.03 (d, J = 7.3 Hz, 1 H). 13C NMR (151 MHz, DMSO-d 6): δ = 156.6, 146.9, 134.8, 132.1, 131.5, 131.2, 130.6, 130.0, 129.4, 128.7, 127.3, 126.6, 125.7, 110.8, 75.2, 51.1. ESI-HRMS: m/z [M + H]+ calcd for C18H14BrN2O3S: 416.9903; found: 416.9903.
    • 10a Gottlieb OR. In New Natural Products and Plant Drugs with Pharmacological, Biological, or Therapeutical Activity: Proceedings of the First International Congress on Medicinal Plant Research, Section A, Held at the University of Munich, Germany, September 6–10, 1976. Wagner HK. Wolff PM. Springer; Berlin: 1977
    • 10b Fraga BM. Nat. Prod. Rep. 1992; 9: 217
    • 10c Merrit AT. Ley SV. Nat. Prod. Rep. 1992; 9: 243
    • 10d Benassi R. In Comprehensive Heterocyclic Chemistry II . Vol. 2, Chap. 2.05. Katritzky AR. Rees CW. Scriven EF. V. Elsevier; Oxford: 1996: 259
    • 10e Ward RS. Nat. Prod. Rep. 1999; 16: 75
    • 11a Maiti G. Adhikari S. Roy SC. Tetrahedron Lett. 1994; 35: 6731
    • 11b Yoshida S.-i. Ogiku T. Ohmizu H. Iwasaki T. J. Org. Chem. 1997; 62: 1310
  • 12 (3aS,4R,11bR)-2-Amino-3a-nitro-4-phenyl-3a,11b-dihydro-4H-furo[2',3':4,5]thiopyrano[2,3-b]quinoline-3-carbonitrile (4aa): Typical Procedure A mixture of 3aa (42 mg, 0.10 mmol), malononitrile (20 mg, 0.30 mmol), and DBU (0.10 mmol) in THF (1 mL) was stirred at r.t. for 2 d. The product was directly purified by flash chromatography (silica gel, 10% EtOAc–PE) to give a white solid; yield: 27 mg (67%, >99% ee); mp 213–215 °C; [α]D 25 +16.37 (c 0.5, THF). HPLC: Chiralpak OD column (15% i-PrOH–hexanes, 1 mL/min); t major = 22.07 min, t minor = 28.92 min. 1H NMR (400 MHz, DMSO-d 6): δ = 8.43 (s, 1 H), 7.99 (dd, J = 8.2, 1.4 Hz, 1 H), 7.88–7.83 (m, 1 H), 7.76 (ddd, J = 8.4, 6.8, 1.5 Hz, 1 H), 7.68–7.62 (m, 2 H), 7.56 (ddd, J = 8.1, 6.8, 1.3 Hz, 1 H), 7.45–7.34 (m, 3 H), 6.72 (d, J = 5.7 Hz, 1 H), 6.15 (dd, J = 11.4, 2.5 Hz, 1 H), 5.54–5.45 (m, 2 H). 13C NMR (151 MHz, DMSO-d 6): δ = 156.3, 147.1, 141.3, 134.8, 131.9, 131.0, 130.0, 129.6, 129.1, 128.1, 127.3, 126.5, 126.5, 125.9, 125.9, 112.6, 110.8, 91.9, 75.2, 70.5, 45.7. ESI-HRMS: m/z [M + H]+ calcd for C21H15N4O3S: 403.0865; found: 403.0854
  • 13 (2R,3R,4R)-3-Bromo-3-nitro-2-phenyl-3,4-dihydro-2H-thiopyrano[2,3-b]quinolin-4-ol 1-oxide (6aa); Typical Procedure A mixture of 3aa (42 mg, 0.10 mmol), and m-CPBA (26 mg, 0.15 mmol) in THF (1 mL) was stirred at 0 °C for 5 h. The product was purified directly by flash chromatography (silica gel 1% MeOH–CH2Cl2) to give a white solid; yield: 37 mg (84%, 99% ee); mp 206–208 °C; [α]D 25 +93.71 (c 0.5, THF). HPLC: Chiralpak OD column (15% i-PrOH–hexane, 1 mL/min); t major = 20.68 min, t minor = 12.46 min. 1H NMR (600 MHz, DMSO-d 6): δ = 8.68 (s, 1 H), 8.26 (d, J = 7.8 Hz, 1 H), 8.21 (d, J = 8.3 Hz, 1 H), 7.97 (qd, J = 7.3, 3.8 Hz, 1 H), 7.85–7.81 (m, 1 H), 7.77 (s, 1 H), 7.72–7.69 (m, 2 H), 7.54 (dd, J = 3.8, 2.6 Hz, 3 H), 6.43 (s, 1 H), 6.19 (s, 1 H). 13C NMR (151 MHz, DMSO-d 6): δ = 158.8, 147.0, 137.0, 132.4, 132.1, 130.6, 130.5, 130.3, 129.7, 129.3, 129.0, 128.9, 128.3, 106.8, 75.3, 68.8. ESI-HRMS: m/z [M + H]+ calcd for C18H14BrN2O4S: 432.9852; found: 432.9854.