Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(08): 1640-1650
DOI: 10.1055/s-0036-1591895
DOI: 10.1055/s-0036-1591895
paper
Improved Synthesis of Glucosinolates
This work was supported by the Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore (ICES/14-3E5A02 and ICES/15-1E5A06).Further Information
Publication History
Received: 27 October 2017
Accepted: 15 December 2017
Publication Date:
24 January 2018 (online)
Abstract
Herein we describe an improved synthesis of glucosinolates, in which the quantity and cost of materials have been reduced by approximately an order of magnitude compared to typical literature procedures. This allowed us to produce multiple glucosinolates in 10–25 gram batches using vessel sizes no larger than 0.5 litres.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591895.
- Supporting Information
-
References
- 1 Fahey JW. Zalcmann AT. Talalay P. Phytochemistry 2001; 56: 5
- 2 Bennett RN. Mellon FA. Kroon PA. J. Agric. Food Chem. 2004; 52: 428
- 3 Halkier BA. Gershenzon J. Annu. Rev. Plant Biol. 2006; 57: 303
- 4 Clarke DB. Anal. Methods 2010; 2: 310
- 5 Hanschen FA. Lamy E. Schreiner M. Rohn S. Angew. Chem. Int. Ed. 2014; 53: 11430
- 6 Del Carpio DP. Basnet RK. Arends A. Lin K. De Vos RC. H. Muth D. Kodde J. Boutilier K. Bucher J. Wang X. Jansen R. Bonnema G. PLoS One 2014; 9: e107123
- 7 Dinkova-Kostova AT. Kostov RV. Trends Mol. Med. 2012; 18: 337
- 8 Fahey JW. Zhang Y. Talalay P. Proc. Natl. Acad. Sci. U.S.A. 1997; 94: 10367
- 9 Benn MH. Can. J. Chem. 1963; 41: 2836
- 10 Gil V. MacLeod AJ. Tetrahedron 1980; 36: 779
- 11 Abramski W. Chmielewski M. J. Carbohydr. Chem. 1996; 15: 109
- 12 Rollin P. Tatibouët A. C. R. Chim. 2011; 14: 194
- 13 Zhang Q. Lebl T. Kulczynska A. Botting NP. Tetrahedron 2009; 65: 4871
- 14 Cerniauskaite D. Rousseau J. Sackus A. Rollin P. Tatibouët A. Eur. J. Org. Chem. 2011; 2293
- 15 Vo QV. Trenerry C. Rochfort S. Wadeson J. Leyton C. Hughes AB. Bioorg. Med. Chem. 2013; 21: 5945
- 16 Vo QV. Trenerry C. Rochfort S. Hughes AB. Tetrahedron 2013; 69: 8731
- 17 Roschanger F. Sheldon RA. Senanayake CH. Green Chem. 2015; 17: 752
- 18 Kartha KP. R. Jennings HJ. J. Carbohydr. Chem. 1990; 9: 777
- 19 Shull BK. Wu Z. Koreeda M. J. Carbohydr. Chem. 1996; 15: 955
- 20 Adinolfi M. Capasso D. Di Gaetano S. Iadonisi A. Leone L. Pastore A. Org. Biomol. Chem. 2011; 9: 6278
- 21 Belen’kii LI. Nitrile Oxides . In Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis: Novel Strategies in Synthesis . Feuer H. John Wiley & Sons, Inc; Hoboken: 2007. 2nd ed. [Online], Chap. 1, 1-127 ; http://onlinelibrary.wiley.com/book/10.1002/ 9780470191552 (accessed January 11, 2018)
- 22 Hansen EC. Levent M. Connolly TJ. Org. Process Res. Dev. 2010; 14: 574
- 23 Baumann M. Baxendale IR. Beilstein J. Org. Chem. 2013; 9: 1613
- 24 Prat D. Wells A. Hayler J. Sneddon H. McElroy CR. Abou-Shehada S. Dunn PJ. Green Chem. 2016; 18: 288
- 25 Alder CM. Hayler J. Henderson RK. Redman AM. Shukla L. Shuster LE. Sneddon H. Green Chem. 2016; 18: 3879
- 26 Ferreira-Silva B. Lavandera I. Kern A. Faber K. Kroutil W. Tetrahedron 2010; 66: 3410
- 27 Hawkes GE. Herwig K. Roberts JD. J. Org. Chem. 1974; 39: 1017
- 28 Elfarra AA. Yeh H.-M. Hanna PE. J. Med. Chem. 1982; 25: 1189
- 29 Wertz S. Studer A. Helv. Chim. Acta 2012; 95: 1758
- 30 Yukawa Y. Sakai M. Suzuki S. Bull. Chem. Soc. Jpn. 1966; 39: 2266
- 31 Suzuki K. Watanabe T. Murahashi S.-I. J. Org. Chem. 2013; 78: 2301
- 32 Floyd N. Balakumar Vijayakrishnan B. Koeppe JR. Davis BG. Angew. Chem. Int. Ed. 2009; 48: 7798
- 33 Davidson NE. Rutherford TJ. Botting NP. Carbohydr. Res. 2001; 330: 295