Semin Thromb Hemost 2018; 44(02): 091-101
DOI: 10.1055/s-0037-1607432
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Platelets as Modulators of Inflammation

Seok-Joo Kim
1   Department of Microbiology, Immunology and Infectious Diseases, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
,
Rachelle P. Davis
1   Department of Microbiology, Immunology and Infectious Diseases, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
,
Craig N. Jenne
1   Department of Microbiology, Immunology and Infectious Diseases, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
› Author Affiliations
Further Information

Publication History

Publication Date:
17 November 2017 (online)

Abstract

Platelets have classically been considered crucial effector cells in hemostasis, but now are increasingly recognized as players during inflammatory responses in innate and adaptive immunity. Platelets can recognize and kill invading pathogens, and, upon stimulation, also release a wide array of mediators that modify immune and endothelial cell responses. Increased platelet activity can protect the host against infectious insults; however, the excessive activity can lead to inflammation-mediated tissue damage. These critical roles highlight the necessity of balancing the platelet response at the intersection of hemostasis and inflammation. In this review, the authors present the current understanding of the inflammatory role of platelets. They also highlight recent findings on a modulator that links inflammation and deleterious tissue damage in disease pathogenesis.

 
  • References

  • 1 Nielsen CT, Østergaard O, Rasmussen NS, Jacobsen S, Heegaard NHH. A review of studies of the proteomes of circulating microparticles: key roles for galectin-3-binding protein-expressing microparticles in vascular diseases and systemic lupus erythematosus. Clin Proteomics 2017; 14 (01) 11
  • 2 Kim HK, Song KS, Park YS. , et al. Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer 2003; 39 (02) 184-191
  • 3 Boucharaba A, Serre CM, Grès S. , et al. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest 2004; 114 (12) 1714-1725
  • 4 Dashevsky O, Varon D, Brill A. Platelet-derived microparticles promote invasiveness of prostate cancer cells via upregulation of MMP-2 production. Int J Cancer 2009; 124 (08) 1773-1777
  • 5 Garraud O, Cognasse F. Platelet Toll-like receptor expression: the link between “danger” ligands and inflammation. Inflamm Allergy Drug Targets 2010; 9 (05) 322-333
  • 6 Verschoor A, Langer HF. Crosstalk between platelets and the complement system in immune protection and disease. Thromb Haemost 2013; 110 (05) 910-919
  • 7 Rossaint J, Zarbock A. Platelets in leucocyte recruitment and function. Cardiovasc Res 2015; 107 (03) 386-395
  • 8 Slaba I, Wang J, Kolaczkowska E, McDonald B, Lee WY, Kubes P. Imaging the dynamic platelet-neutrophil response in sterile liver injury and repair in mice. Hepatology 2015; 62 (05) 1593-1605
  • 9 Manne BK, Xiang SC, Rondina MT. Platelet secretion in inflammatory and infectious diseases. Platelets 2017; 28 (02) 155-164
  • 10 Yeaman MR. Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol 2014; 12 (06) 426-437
  • 11 Oikonomopoulou K, Ricklin D, Ward PA, Lambris JD. Interactions between coagulation and complement--their role in inflammation. Semin Immunopathol 2012; 34 (01) 151-165
  • 12 Chen W, Liang X, Syed AK. , et al. Inhibiting GPIbα shedding preserves post-Transfusion recovery and hemostatic function of platelets after prolonged storage. Arterioscler Thromb Vasc Biol 2016; 36 (09) 1821-1828
  • 13 Shpacovitch V, Feld M, Hollenberg MD, Luger TA, Steinhoff M. Role of protease-activated receptors in inflammatory responses, innate and adaptive immunity. J Leukoc Biol 2008; 83 (06) 1309-1322
  • 14 Al-Tamimi M, Gardiner EE, Thom JY. , et al. Soluble glycoprotein VI is raised in the plasma of patients with acute ischemic stroke. Stroke 2011; 42 (02) 498-500
  • 15 Facey A, Pinar I, Arthur JF. , et al. A-disintegrin-and-metalloproteinase (ADAM) 10 activity on resting and activated platelets. Biochemistry 2016; 55 (08) 1187-1194
  • 16 Vogel S, Bodenstein R, Chen Q. , et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest 2015; 125 (12) 4638-4654
  • 17 Maugeri N, Franchini S, Campana L. , et al. Circulating platelets as a source of the damage-associated molecular pattern HMGB1 in patients with systemic sclerosis. Autoimmunity 2012; 45 (08) 584-587
  • 18 Mickiewicz B, Tam P, Jenne CN. , et al; Alberta Sepsis Network. Integration of metabolic and inflammatory mediator profiles as a potential prognostic approach for septic shock in the intensive care unit. Crit Care 2015; 19 (01) 11
  • 19 Maugeri N, Campana L, Gavina M. , et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost 2014; 12 (12) 2074-2088
  • 20 Clark SR, Ma AC, Tavener SA. , et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13 (04) 463-469
  • 21 McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 2012; 12 (03) 324-333
  • 22 McDonald B, Davis RP, Kim SJ. , et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 2017; 129 (10) 1357-1367
  • 23 Ma AC, Kubes P. Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J Thromb Haemost 2008; 6 (03) 415-420
  • 24 Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med 2013; 369 (09) 840-851
  • 25 Bigalke B, Lindemann S, Ehlers R. , et al. Expression of platelet collagen receptor glycoprotein VI is associated with acute coronary syndrome. Eur Heart J 2006; 27 (18) 2165-2169
  • 26 Schubert P, Coupland D, Nombalais M, M. Walsh G, Devine DV. RhoA/ROCK signaling contributes to sex differences in the activation of human platelets. Thromb Res 2016; 139 (139) 50-55
  • 27 Milford EM, Reade MC. Comprehensive review of platelet storage methods for use in the treatment of active hemorrhage. Transfusion 2016; 56 (Suppl. 02) S140-S148
  • 28 van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 2012; 64 (03) 676-705
  • 29 Burnouf T, Goubran HA, Chou ML, Devos D, Radosevic M. Platelet microparticles: detection and assessment of their paradoxical functional roles in disease and regenerative medicine. Blood Rev 2014; 28 (04) 155-166
  • 30 Freyssinet JM. Cellular microparticles: what are they bad or good for?. J Thromb Haemost 2003; 1 (07) 1655-1662
  • 31 Streiff MB. Thrombosis in the setting of cancer. Hematology (Am Soc Hematol Educ Program) 2016; 2016 (01) 196-205
  • 32 Varon D, Shai E. Platelets and their microparticles as key players in pathophysiological responses. J Thromb Haemost 2015; 13 (Suppl. 01) S40-S46
  • 33 Saas P, Angelot F, Bardiaux L, Seilles E, Garnache-Ottou F, Perruche S. Phosphatidylserine-expressing cell by-products in transfusion: A pro-inflammatory or an anti-inflammatory effect?. Transfus Clin Biol 2012; 19 (03) 90-97
  • 34 Mitchell AJ, Gray WD, Hayek SS. , et al. Platelets confound the measurement of extracellular miRNA in archived plasma. Sci Rep 2016; 6 (01) 32651
  • 35 Dinkla S, van Cranenbroek B, van der Heijden WA. , et al. Platelet microparticles inhibit IL-17 production by regulatory T cells through P-selectin. Blood 2016; 127 (16) 1976-1986
  • 36 Levin J, Ebbe S. Why are recently published platelet counts in normal mice so low? . Blood 1994; 83 (12) 3829-3831
  • 37 Muronoi T, Koyama K, Nunomiya S. , et al. Immature platelet fraction predicts coagulopathy-related platelet consumption and mortality in patients with sepsis. Thromb Res 2016; 144: 169-175
  • 38 Nkambule BB, Davison GM, Ipp H. The evaluation of platelet indices and markers of inflammation, coagulation and disease progression in treatment-naïve, asymptomatic HIV-infected individuals. Int J Lab Hematol 2015; 37 (04) 450-458
  • 39 Claushuis TAM, van Vught LA, Scicluna BP. , et al; Molecular Diagnosis and Risk Stratification of Sepsis Consortium. Thrombocytopenia is associated with a dysregulated host response in critically ill sepsis patients. Blood 2016; 127 (24) 3062-3072
  • 40 Kuckleburg CJ, McClenahan DJ, Czuprynski CJ. Platelet activation by Histophilus somni and its lipooligosaccharide induces endothelial cell proinflammatory responses and platelet internalization. Shock 2008; 29 (02) 189-196
  • 41 Cox D, Kerrigan SW, Watson SP. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J Thromb Haemost 2011; 9 (06) 1097-1107
  • 42 Andonegui G, Kerfoot SM, McNagny K, Ebbert KV, Patel KD, Kubes P. Platelets express functional Toll-like receptor-4. Blood 2005; 106 (07) 2417-2423
  • 43 Cognasse F, Nguyen KA, Damien P. , et al. The inflammatory role of platelets via their TLRs and Siglec receptors. Front Immunol 2015; 6 (March): 83
  • 44 Koupenova M, Vitseva O, MacKay CR. , et al. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood 2014; 124 (05) 791-802
  • 45 Semple JW, Freedman J. Platelets and innate immunity. Cell Mol Life Sci 2010; 67 (04) 499-511
  • 46 Keane C, Tilley D, Cunningham A. , et al. Invasive Streptococcus pneumoniae trigger platelet activation via Toll-like receptor 2. J Thromb Haemost 2010; 8 (12) 2757-2765
  • 47 Blair P, Rex S, Vitseva O. , et al. Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase. Circ Res 2009; 104 (03) 346-354
  • 48 Ding N, Chen G, Hoffman R. , et al. Toll-like receptor 4 regulates platelet function and contributes to coagulation abnormality and organ injury in hemorrhagic shock and resuscitation. Circ Cardiovasc Genet 2014; 7 (05) 615-624
  • 49 Peerschke EI, Yin W, Ghebrehiwet B. Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol Immunol 2010; 47 (13) 2170-2175
  • 50 Del Conde I, Crúz MA, Zhang H, López JA, Afshar-Kharghan V. Platelet activation leads to activation and propagation of the complement system. J Exp Med 2005; 201 (06) 871-879
  • 51 Peerschke EI, Yin W, Grigg SE, Ghebrehiwet B. Blood platelets activate the classical pathway of human complement. J Thromb Haemost 2006; 4 (09) 2035-2042
  • 52 Ghebrehiwet B, Lim BL, Peerschke EI, Willis AC, Reid KB. Isolation, cDNA cloning, and overexpression of a 33-kD cell surface glycoprotein that binds to the globular “heads” of C1q. J Exp Med 1994; 179 (06) 1809-1821
  • 53 Nguyen T, Ghebrehiwet B, Peerschke EI. Staphylococcus aureus protein A recognizes platelet gC1qR/p33: a novel mechanism for staphylococcal interactions with platelets. Infect Immun 2000; 68 (04) 2061-2068
  • 54 Sethi S, Herrmann M, Roller J. , et al. Blockade of gC1qR/p33, a receptor for C1q, inhibits adherence of Staphylococcus aureus to the microvascular endothelium. Microvasc Res 2011; 82 (01) 66-72
  • 55 Hamad OA, Ekdahl KN, Nilsson PH. , et al. Complement activation triggered by chondroitin sulfate released by thrombin receptor-activated platelets. J Thromb Haemost 2008; 6 (08) 1413-1421
  • 56 Yin W, Ghebrehiwet B, Peerschke EI. Expression of complement components and inhibitors on platelet microparticles. Platelets 2008; 19 (03) 225-233
  • 57 Wiedmer T, Esmon CT, Sims PJ. On the mechanism by which complement proteins C5b-9 increase platelet prothrombinase activity. J Biol Chem 1986; 261 (31) 14587-14592
  • 58 Wiedmer T, Esmon CT, Sims PJ. Complement proteins C5b-9 stimulate procoagulant activity through platelet prothrombinase. Blood 1986; 68 (04) 875-880
  • 59 Verschoor A, Neuenhahn M, Navarini AA. , et al. A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3. Nat Immunol 2011; 12 (12) 1194-1201
  • 60 Schmaier AH, Amenta S, Xiong T, Heda GD, Gewirtz AM. Expression of platelet C1 inhibitor. Blood 1993; 82 (02) 465-474
  • 61 Assinger A. Platelets and infection-an emerging role of platelets in viral infection. Front Immunol 2014; 5: 649
  • 62 Danon D, Jerushalmy Z, De Vries A. Incorporation of influenza virus in human blood platelets in vitro. Electron microscopical observation. Virology 1959; 9: 719-722
  • 63 Youssefian T, Drouin A, Massé JM, Guichard J, Cramer EM. Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation. Blood 2002; 99 (11) 4021-4029
  • 64 Noisakran S, Gibbons RV, Songprakhon P. , et al. Detection of dengue virus in platelets isolated from dengue patients. Southeast Asian J Trop Med Public Health 2009; 40 (02) 253-262
  • 65 de Almeida AJ, Campos-de-Magalhães M, Brandão-Mello CE. , et al. Detection of hepatitis C virus in platelets: evaluating its relationship to antiviral therapy outcome. Hepatogastroenterology 2009; 56 (90) 429-436
  • 66 Flaujac C, Boukour S, Cramer-Bordé E. Platelets and viruses: an ambivalent relationship. Cell Mol Life Sci 2010; 67 (04) 545-556
  • 67 Iannacone M, Sitia G, Isogawa M. , et al. Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nat Med 2005; 11 (11) 1167-1169
  • 68 Iannacone M, Sitia G, Isogawa M. , et al. Platelets prevent IFN-alpha/beta-induced lethal hemorrhage promoting CTL-dependent clearance of lymphocytic choriomeningitis virus. Proc Natl Acad Sci U S A 2008; 105 (02) 629-634
  • 69 Loria GD, Romagnoli PA, Moseley NB, Rucavado A, Altman JD. Platelets support a protective immune response to LCMV by preventing splenic necrosis. Blood 2013; 121 (06) 940-950
  • 70 Solomon Tsegaye T, Gnirß K, Rahe-Meyer N. , et al. Platelet activation suppresses HIV-1 infection of T cells. Retrovirology 2013; 10 (01) 48
  • 71 Auerbach DJ, Lin Y, Miao H. , et al. Identification of the platelet-derived chemokine CXCL4/PF-4 as a broad-spectrum HIV-1 inhibitor. Proc Natl Acad Sci U S A 2012; 109 (24) 9569-9574
  • 72 Guo L, Feng K, Wang YC. , et al. Critical role of CXCL4 in the lung pathogenesis of influenza (H1N1) respiratory infection. Mucosal Immunol 2017; 10 (06) 1529-1541
  • 73 Morrell CN, Aggrey AA, Chapman LM, Modjeski KL. Emerging roles for platelets as immune and inflammatory cells. Blood 2014; 123 (18) 2759-2767
  • 74 Matzinger P. The danger model: a renewed sense of self. Science 2002; 296 (5566): 301-305
  • 75 Bertheloot D, Latz E. HMGB1, IL-1, IL-33 and S100 proteins: dual-function alarmins. Cell Mol Immunol 2017; 14 (01) 43-64
  • 76 Rouhiainen A, Imai S, Rauvala H, Parkkinen J. Occurrence of amphoterin (HMG1) as an endogenous protein of human platelets that is exported to the cell surface upon platelet activation. Thromb Haemost 2000; 84 (06) 1087-1094
  • 77 Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 2005; 5 (04) 331-342
  • 78 Nomura S, Fujita S, Ozasa R. , et al. The correlation between platelet activation markers and HMGB1 in patients with disseminated intravascular coagulation and hematologic malignancy. Platelets 2011; 22 (05) 396-397
  • 79 Gawlowski T, Stratmann B, Ruetter R. , et al. Advanced glycation end products strongly activate platelets. Eur J Nutr 2009; 48 (08) 475-481
  • 80 Fuentes E, Rojas A, Palomo I. Role of multiligand/RAGE axis in platelet activation. Thromb Res 2014; 133 (03) 308-314
  • 81 Hilf N, Singh-Jasuja H, Schwarzmaier P, Gouttefangeas C, Rammensee HG, Schild H. Human platelets express heat shock protein receptors and regulate dendritic cell maturation. Blood 2002; 99 (10) 3676-3682
  • 82 Yu LX, Yan L, Yang W. , et al. Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein. Nat Commun 2014; 5: 5256
  • 83 Semeraro F, Ammollo CT, Morrissey JH. , et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 2011; 118 (07) 1952-1961
  • 84 Nurden AT. Platelets, inflammation and tissue regeneration. Thromb Haemost 2011; 105 (Suppl. 01) S13-S33
  • 85 Blair P, Flaumenhaft R. Platelet α-granules: basic biology and clinical correlates. Blood Rev 2009; 23 (04) 177-189
  • 86 McDonald B, Pittman K, Menezes GB. , et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 2010; 330 (6002): 362-366
  • 87 Secor D, Li F, Ellis CG. , et al. Impaired microvascular perfusion in sepsis requires activated coagulation and P-selectin-mediated platelet adhesion in capillaries. Intensive Care Med 2010; 36 (11) 1928-1934
  • 88 Shibazaki M, Kawabata Y, Yokochi T, Nishida A, Takada H, Endo Y. Complement-dependent accumulation and degradation of platelets in the lung and liver induced by injection of lipopolysaccharides. Infect Immun 1999; 67 (10) 5186-5191
  • 89 Singer G, Urakami H, Specian RD, Stokes KY, Granger DN. Platelet recruitment in the murine hepatic microvasculature during experimental sepsis: role of neutrophils. Microcirculation 2006; 13 (02) 89-97
  • 90 Tanaka KA, Key NS, Levy JH. Blood coagulation: hemostasis and thrombin regulation. Anesth Analg 2009; 108 (05) 1433-1446
  • 91 Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest 1999; 103 (06) 879-887
  • 92 Vergnolle N, Derian CK, D'Andrea MR, Steinhoff M, Andrade-Gordon P. Characterization of thrombin-induced leukocyte rolling and adherence: a potential proinflammatory role for proteinase-activated receptor-4. J Immunol 2002; 169 (03) 1467-1473
  • 93 Braga AD, Miranda JP, Ferreira GM. , et al. Blockade of proteinase-activated receptor-4 inhibits the eosinophil recruitment induced by eotaxin-1 in the pleural cavity of mice. Pharmacology 2010; 86 (04) 224-230
  • 94 Kaplan ZS, Zarpellon A, Alwis I. , et al. Thrombin-dependent intravascular leukocyte trafficking regulated by fibrin and the platelet receptors GPIb and PAR4. Nat Commun 2015; 6: 7835
  • 95 Slofstra SH, Bijlsma MF, Groot AP. , et al. Protease-activated receptor-4 inhibition protects from multiorgan failure in a murine model of systemic inflammation. Blood 2007; 110 (09) 3176-3182
  • 96 Lê VB, Schneider JG, Boergeling Y. , et al. Platelet activation and aggregation promote lung inflammation and influenza virus pathogenesis. Am J Respir Crit Care Med 2015; 191 (07) 804-819
  • 97 Joshi N, Kopec AK, O'Brien KM. , et al. Coagulation-driven platelet activation reduces cholestatic liver injury and fibrosis in mice. J Thromb Haemost 2015; 13 (01) 57-71
  • 98 Mao Y, Zhang M, Tuma RF, Kunapuli SP. Deficiency of PAR4 attenuates cerebral ischemia/reperfusion injury in mice. J Cereb Blood Flow Metab 2010; 30 (05) 1044-1052
  • 99 Busso N, Chobaz-Péclat V, Hamilton J, Spee P, Wagtmann N, So A. Essential role of platelet activation via protease activated receptor 4 in tissue factor-initiated inflammation. Arthritis Res Ther 2008; 10 (02) R42
  • 100 de Stoppelaar SF, Van't Veer C, van den Boogaard FE. , et al. Protease activated receptor 4 limits bacterial growth and lung pathology during late stage Streptococcus pneumoniae induced pneumonia in mice. Thromb Haemost 2013; 110 (03) 582-592
  • 101 Leger AJ, Jacques SL, Badar J. , et al. Blocking the protease-activated receptor 1-4 heterodimer in platelet-mediated thrombosis. Circulation 2006; 113 (09) 1244-1254
  • 102 Duvernay M, Young S, Gailani D, Schoenecker J, Hamm HE. Protease-activated receptor (PAR) 1 and PAR4 differentially regulate factor V expression from human platelets. Mol Pharmacol 2013; 83 (04) 781-792
  • 103 Yatomi Y, Igarashi Y, Yang L. , et al. Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. J Biochem 1997; 121 (05) 969-973
  • 104 Cyster JG, Schwab SR. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 2012; 30 (01) 69-94
  • 105 Urtz N, Gaertner F, von Bruehl ML. , et al. Sphingosine 1-phosphate produced by sphingosine kinase 2 intrinsically controls platelet aggregation in vitro and in vivo. Circ Res 2015; 117 (04) 376-387
  • 106 Lin CI, Chen CN, Lin PW, Lee H. Sphingosine 1-phosphate regulates inflammation-related genes in human endothelial cells through S1P1 and S1P3. Biochem Biophys Res Commun 2007; 355 (04) 895-901
  • 107 Winkler MS, Nierhaus A, Holzmann M. , et al. Decreased serum concentrations of sphingosine-1-phosphate in sepsis. Crit Care 2015; 19 (01) 372
  • 108 Gomes L, Fernando S, Fernando RH. , et al. Sphingosine 1-phosphate in acute dengue infection. PLoS One 2014; 9 (11) e113394
  • 109 Peng X, Hassoun PM, Sammani S. , et al. Protective effects of sphingosine 1-phosphate in murine endotoxin-induced inflammatory lung injury. Am J Respir Crit Care Med 2004; 169 (11) 1245-1251
  • 110 Winkler MS, Nierhaus A, Poppe A, Greiwe G, Gräler MH, Daum G. Sphingosine-1-phosphate: a potential biomarker and therapeutic target for endothelial dysfunction and sepsis?. Shock 2017; 47 (06) 666-672
  • 111 Shiraki R, Inoue N, Kawasaki S. , et al. Expression of Toll-like receptors on human platelets. Thromb Res 2004; 113 (06) 379-385
  • 112 Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O. Evidence of Toll-like receptor molecules on human platelets. Immunol Cell Biol 2005; 83 (02) 196-198
  • 113 Gerardy-Schahn R, Ambrosius D, Saunders D. , et al. Characterization of C3a receptor-proteins on guinea pig platelets and human polymorphonuclear leukocytes. Eur J Immunol 1989; 19 (06) 1095-1102
  • 114 Quigg RJ, Alexander JJ, Lo CF, Lim A, He C, Holers VM. Characterization of C3-binding proteins on mouse neutrophils and platelets. J Immunol 1997; 159 (05) 2438-2444
  • 115 Cosgrove LJ, d'Apice AJ, Haddad A, Pedersen J, McKenzie IF. CR3 receptor on platelets and its role in the prostaglandin metabolic pathway. Immunol Cell Biol 1987; 65 (Pt 6): 453-460
  • 116 Kahn ML, Zheng YW, Huang W. , et al. A dual thrombin receptor system for platelet activation. Nature 1998; 394 (6694): 690-694
  • 117 Jin J, Kunapuli SP. Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc Natl Acad Sci U S A 1998; 95 (14) 8070-8074
  • 118 Hechler B, Eckly A, Ohlmann P, Cazenave JP, Gachet C. The P2Y1 receptor, necessary but not sufficient to support full ADP-induced platelet aggregation, is not the target of the drug clopidogrel. Br J Haematol 1998; 103 (03) 858-866
  • 119 Nieswandt B, Schulte V, Bergmeier W. , et al. Long-term antithrombotic protection by in vivo depletion of platelet glycoprotein VI in mice. J Exp Med 2001; 193 (04) 459-469
  • 120 Leytin V, Allen DJ, Gwozdz A, Garvey B, Freedman J. Role of platelet surface glycoprotein Ibalpha and P-selectin in the clearance of transfused platelet concentrates. Transfusion 2004; 44 (10) 1487-1495
  • 121 Avenarius HJ, Freund M, Kleine HD, Heussner P, Poliwoda H. Granulocyte colony-stimulating factor enhances the expression of CD62 on platelets in vivo. Int J Hematol 1993; 58 (03) 189-196
  • 122 Kleinschnitz C, Pozgajova M, Pham M, Bendszus M, Nieswandt B, Stoll G. Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. Circulation 2007; 115 (17) 2323-2330
  • 123 Jamasbi J, Ayabe K, Goto S, Nieswandt B, Peter K, Siess W. Platelet receptors as therapeutic targets: Past, present and future. Thromb Haemost 2017; 117 (07) 1249-1257
  • 124 Wang JF, Liu ZY, Groopman JE. The alpha-chemokine receptor CXCR4 is expressed on the megakaryocytic lineage from progenitor to platelets and modulates migration and adhesion. Blood 1998; 92 (03) 756-764
  • 125 Clemetson KJ, Clemetson JM, Proudfoot AE, Power CA, Baggiolini M, Wells TN. Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets. Blood 2000; 96 (13) 4046-4054
  • 126 Henn V, Slupsky JR, Gräfe M. , et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998; 391 (6667): 591-594