Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(15): 2990-2998
DOI: 10.1055/s-0037-1609835
DOI: 10.1055/s-0037-1609835
special topic
Latent Radical Cleavage of α-Allenylic C–O Bonds: Potassium Persulfate Mediated Thiolation of Allenylphosphine Oxides
This project was supported by the Fundamental Research Funds for the Central Universities (NJAU, Grant No. KYTZ201604).Further Information
Publication History
Received: 10 February 2018
Accepted after revision: 14 March 2018
Publication Date:
19 April 2018 (online)
Published as part of the Special Topic Modern Radical Methods and their Strategic Applications in Synthesis
Abstract
A novel potassium persulfate (K2S2O8) mediated thiolation of allenylphosphine oxides with diaryl sulfides is disclosed. Mechanistic studies indicate that K2S2O8 homolyzes the diaryl sulfide to produce a thiyl radical (PhS•), which is followed by C–O bond cleavage of the allenylphosphine oxide under metal-free conditions, affording novel S,P-bifunctionalized butadienes in moderate to excellent yields.
Key words
potassium persulfate - thiolation - C–O bond cleavage - thiyl radical - S,P-bifunctionalized butadienesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609835.
- Supporting Information
-
References
- 1a Dvorak CA. Schmitz WD. Poon DJ. Pryde DC. Lawson JP. Amos RA. Meyers AI. Angew. Chem. Int. Ed. 2000; 39: 1664
- 1b Liu H. Jiang X. Chem. Asian J. 2013; 8: 2546
- 1c Marcantoni E. Massaccesi M. Petrini M. J. Org. Chem. 2000; 65: 4553
- 1d Johannesson P. Lindeberg G. Johansson A. Nikiforovich GV. Gogoll A. Synnergren B. Grèves ML. Nyberg F. Karlén A. Hallberg A. J. Med. Chem. 2002; 45: 1767
- 2a Gangjee A. Zeng Y. Talreja T. McGuire JJ. Kisliuk RL. Queener SF. J. Med. Chem. 2007; 50: 3046
- 2b Ilardi EA. Vitaku E. Njardarson JT. J. Med. Chem. 2014; 57: 2832
- 2c Mao Y. Jiang L. Chen T. He H. Liu G. Wang H. Synthesis 2015; 47: 1387
- 2d List B. Synlett 2001; 1675
- 2e Harb HY. Procter DJ. Synlett 2012; 23: 6
- 2f Müller TJ. J. Synthesis 2012; 44: 159
- 2g Kocienski P. Synfacts 2012; 8: 5
- 3 Arrayás RG. Carretero JC. Chem. Commun. 2011; 47: 2207
- 4 Iino H. Usui T. Hanna J.-i. Nat. Commun. 2015; 6: 6828
- 5a Schaumann E. Top. Curr. Chem. 2007; 274: 1
- 5b Sabarre A. Love JA. Org. Lett. 2008; 10: 3941
- 5c Bratz M. Bullock WH. Overman LE. Takemoto T. J. Am. Chem. Soc. 1995; 117: 5958
- 5d Pearson WH. Lee IY. Mi Y. Stoy P. J. Org. Chem. 2004; 69: 9109
- 6 Trost BM. Lavoie AC. J. Am. Chem. Soc. 1983; 105: 5075
- 7a Miller RD. Hassig R. Tetrahedron Lett. 1985; 26: 2395
- 7b Mizuno H. Domon K. Masuya K. Tanino K. Kuwajima I. J. Org. Chem. 1999; 64: 2648
- 8a Liu Z. Rainier JD. Org. Lett. 2005; 7: 131
- 8b Macnaughtan ML. Gary JB. Gerlach DL. Johnson MJ. A. Kampf JW. Organometallics 2009; 28: 2880
- 9a Tu HY. Hu BL. Deng CL. Zhang XG. Chem. Commun. 2015; 51: 15558
- 9b Siddaraju Y. Prabhu KR. J. Org. Chem. 2017; 82: 3084
- 9c Sun J. Zhang-Negrerie D. Du Y. Adv. Synth. Catal. 2016; 358: 2035
- 9d Maher JM. Cooper NJ. J. Am. Chem. Soc. 1980; 102: 7604
- 9e Ranu BC. Chattopadhyay K. Banerjee S. J. Org. Chem. 2006; 71: 423
- 9f Chen MT. Tang XY. Shi M. Org. Chem. Front. 2017; 4: 86
- 9g Chu CM. Tu Z. Wu P. Wang CC. Liu JT. Kuo CW. Shin YH. Yao CF. Tetrahedron 2009; 65: 3878
- 9h Imazaki Y. Shirakawa E. Hayashi T. Tetrahedron 2011; 67: 10212
- 9i Zhang C. McClure J. Chou CJ. J. Org. Chem. 2015; 80: 4919
- 10a Ye Y. Huang C. Zhao C. Ren B. Xiao H. Li X. Synth. Commun. 2016; 46: 1634
- 10b Gonçalves LC. Victória FN. Lima DB. Borba PM. Perin G. Savegnago L. Lenardão EJ. Tetrahedron Lett. 2014; 55: 5275
- 10c Wu W. Dai W. Ji X. Cao S. Org. Lett. 2016; 18: 2918
- 10d Palani T. Park K. Song KH. Lee S. Adv. Synth. Catal. 2013; 355: 1160
- 10e Ni S. Zhang L. Zhang W. Mei H. Han J. Pan Y. J. Org. Chem. 2016; 81: 9470
- 10f Iwasaki M. Fujii T. Nakajima K. Nishihara Y. Angew. Chem. Int. Ed. 2014; 53: 13880
- 10g Wang ZL. Tang RY. Luo PS. Deng CL. Zhong P. Li JH. Tetrahedron 2008; 64: 10670
- 10h Zhang XS. Jiao JY. Zhang XH. Hu BL. Zhang XG. J. Org. Chem. 2016; 81: 5710
- 10i Ye LM. Qian L. Chen YY. Zhang XJ. Yan M. Org. Biomol. Chem. 2017; 15: 550
- 10j Li B. Ni PH. Huang HW. Xiao FH. Deng GJ. Adv. Synth. Catal. 2017; 359: 4300
- 12a Yu L. Huang X. Synlett 2007; 1371
- 12b Everhardus RH. Gräfing R. Brandsma L. Synthesis 1983; 623
- 12c Grayson JI. Warren S. Zaslona AT. J. Chem. Soc., Perkin Trans. 1 1987; 967
- 12d Mueller WH. Butler PE. J. Org. Chem. 1968; 33: 1533
- 12e Bäckvall J.-E. Ericsson A. J. Org. Chem. 1994; 59: 5850
- 13a Zeng JW. Liu YC. Hsieh PA. Huang YT. Yi CL. Badsara SS. Lee CF. Green Chem. 2014; 16: 2644
- 13b Ge W. Wei Y. Green Chem. 2012; 14: 2066
- 13c Saba S. Rafique J. Braga AL. Adv. Synth. Catal. 2015; 357: 1446
- 13d Ge W. Zhu X. Wei Y. Adv. Synth. Catal. 2013; 355: 3014
- 13e Du B. Jin B. Sun P. Org. Lett. 2014; 16: 3032
- 13f Du HA. Zhang XG. Tang RY. Li JH. J. Org. Chem. 2009; 74: 7844
- 13g Lin C. Li D. Wang B. Yao J. Zhang Y. Org. Lett. 2015; 17: 1328
- 13h Wang PF. Wang XQ. Dai JJ. Feng YS. Xu HJ. Org. Lett. 2014; 16: 4586
- 13i Bilheri FN. Stein AL. Zeni G. Adv. Synth. Catal. 2015; 357: 1221
- 13j Yang ZJ. Hu BL. Deng CL. Zhang XG. Adv. Synth. Catal. 2014; 356: 1962
- 13k Yang L. Wen Q. Xiao F. Deng G. J. Org. Biomol. Chem. 2014; 12: 9519
- 14a Brel VK. Heteroat. Chem. 2006; 17: 547
- 14b Ma S. Acc. Chem. Res. 2009; 42: 1679
- 14c Alcaide B. Almendros P. Aragoncillo C. Chem. Soc. Rev. 2010; 39: 783
- 14d Krause N. Winter C. Chem. Rev. 2011; 111: 1994
- 14e Ye J. Ma S. Acc. Chem. Res. 2014; 47: 989
- 15a Mukai C. Ohta M. Yamashita H. Kitagaki S. J. Org. Chem. 2004; 69: 6867
- 15b Chakravarty M. Swamy KC. K. J. Org. Chem. 2006; 71: 9128
- 15c Nishimura T. Hirabayashi S. Yasuhara Y. Hayashi T. J. Am. Chem. Soc. 2006; 128: 2556
- 15d Yu F. Lian X. Ma S. Org. Lett. 2007; 9: 1703
- 15e Sajna KV. Swamy KC. K. J. Org. Chem. 2012; 77: 5345
- 15f Gangadhararao G. Tulichala RN. P. Swamy KC. K. Chem. Commun. 2015; 51: 7168
- 15g Baumann M. Baxendale IR. J. Org. Chem. 2015; 80: 10806
- 15h Antitha M. Gangadhararao G. Swamy KC. K. Org. Biomol. Chem. 2016; 14: 3591
- 15i Shen W. Luo B. Yang J. Zhang L. Han L.-B. Chem. Commun. 2016; 52: 6451
- 16a Fourgeaud P. Volle JN. Vors JP. Bekro YA. Pirat JL. Virieux D. Tetrahedron 2016; 72: 7912
- 16b Milosevic S. Banide EV. Müller-Bunz H. Gilheany DG. McGlinchey MJ. Organometallics 2011; 30: 3804
- 16c Macomber RS. Kennedy ER. J. Org. Chem. 1976; 41: 3191
- 17a Matveeva EV. Kovaleva EY. Brel VK. Russ. J. Gen. Chem. 2015; 85: 2592
- 17b Nicponski DR. Marchi JM. Synthesis 2014; 46: 1725
- 18a Gu Y. Hama T. Hammond GB. Chem. Commun. 2000; 395
- 18b Zapata AJ. Gu Y. Hammond GB. J. Org. Chem. 2000; 65: 227
- 19 Mei YQ. Liu JT. Liu ZJ. Synthesis 2007; 739
- 20a Brel VK. Stang PJ. Eur. J. Org. Chem. 2003; 224
- 20b Guo H. Zheng Z. Yu F. Ma S. Holuigue A. Tromp DS. Elsevier CJ. Yu Y. Angew. Chem. Int. Ed. 2006; 45: 4997
- 21a Trifonov LS. Simova SD. Crahovats AS. Tetrahedron Lett. 1987; 28: 3391
- 21b Essid I. Laborde C. Legros F. Sevrain N. Touil S. Rolland M. Ayad T. Volle J.-N. Pirat J.-L. Virieux D. Org. Lett. 2017; 19: 1882
- 21c Fourgeaud P. Daydé B. Volle J.-N. Vors J.-P. Van der Lee A. Pirat J.-L. Virieux D. Org. Lett. 2011; 13: 5076
- 22a Chen YZ. Zhang L. Lu AM. Yang F. Wu L. J. Org. Chem. 2015; 80: 673
- 22b Mao M. Zhang L. Chen YZ. Zhu J. Wu L. ACS Catal. 2017; 7: 181
- 22c Zhu J. Mao M. Ji HJ. Xu JY. Wu L. Org. Lett. 2017; 19: 1946
- 22d Zhang L. Zhu J. Ma J. Wu L. Zhang WH. Org. Lett. 2017; 19: 6308
- 23a Ogawa A. Obayashi R. Doi M. Sonoda N. Hirao T. J. Org. Chem. 1998; 63: 4277
- 23b Leardini R. Nanni D. Zanardi G. J. Org. Chem. 2000; 65: 2763
- 24 Prasad CD. Balkrishna SJ. Kumar A. Bhakuni BS. Shrimali K. Biswas S. Kumar S. J. Org. Chem. 2013; 78: 1434
For the reactions of allenes/alkynes with aryl disulfide under UV light, see: