Synthesis 2018; 50(17): 3493-3498
DOI: 10.1055/s-0037-1610169
paper
© Georg Thieme Verlag Stuttgart · New York

A Convergent Total Synthesis of the Biologically Active Benzo­furans Ailanthoidol, Egonol and Homoegonol from Biomass-Derived­ Eugenol

José C. Espinoza-Hicks
a   Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario, Campus Universitario, Apartado Postal 669, Chihuahua, 31115 Chihuahua, Mexico   Email: acamach@uach.mx
,
Gerardo Zaragoza-Galán
a   Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario, Campus Universitario, Apartado Postal 669, Chihuahua, 31115 Chihuahua, Mexico   Email: acamach@uach.mx
,
David Chávez-Flores
a   Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario, Campus Universitario, Apartado Postal 669, Chihuahua, 31115 Chihuahua, Mexico   Email: acamach@uach.mx
,
Víctor H. Ramos-Sánchez
a   Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario, Campus Universitario, Apartado Postal 669, Chihuahua, 31115 Chihuahua, Mexico   Email: acamach@uach.mx
,
Joaquín Tamariz
b   Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N, 11340 Ciudad de Mexico, Mexico
,
a   Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario, Campus Universitario, Apartado Postal 669, Chihuahua, 31115 Chihuahua, Mexico   Email: acamach@uach.mx
› Author Affiliations
We express our gratitude to the Consejo Nacional de Ciencia y Tecnología (CONACYT) (Mexico) for a grant to purchase the NMR instrument (INFR-2014-01-226114). J.T. gratefully acknowledges SIP-IPN (grants 20170791 and 20180198) and CONACYT (grant 178319) for financial support. J.T. is a fellow of the EDI-IPN and COFAA-IPN programs.
Further Information

Publication History

Received: 06 April 2018

Accepted after revision: 03 May 2018

Publication Date:
28 June 2018 (online)


Abstract

An efficient, general synthetic protocol for the synthesis of the biologically active benzofurans ailanthoidol, egonol and homoegonol was developed. The key starting material, eugenol, is a naturally occurring and abundant precursor. The protocol, involving sequential acylation and intramolecular Wittig reaction, provides a convenient method for building the benzofuran moiety in good yield.

Supporting Information

 
  • References

  • 1 Keay BA. Hopkins JW. Dibble PW. In Comprehensive Heterocyclic Chemistry III . Vol. 3. Katritzky AR. Ramsden CA. Scriven EV. F. Taylor RJ. K. Elsevier; Oxford: 2008: 571-623
  • 2 Galal SA. Abd El-All AS. Abdallah MM. El-Diwani HI. Bioorg. Med. Chem. Lett. 2009; 19: 2420
  • 3 Abdelhafez OM. Amin KM. Ali HI. Abdalla MM. Ahmed EY. RSC Adv. 2014; 4: 11569
  • 4 Jiang X. Liu W. Zhang W. Jiang F. Gao Z. Zhuang H. Fu L. Eur. J. Med. Chem. 2011; 46: 3526
  • 5 Aslam SN. Stevenson PC. Phythian SJ. Veitch NC. Hall DR. Tetrahedron 2006; 62: 4214
    • 6a Nevagi RJ. Dighe SN. Eur. J. Med. Chem. 2015; 97: 561
    • 6b Naik R. Dipesh RN. Harmalkar DS. Xu X. Jang J. Lee K. Eur. J. Med. Chem. 2015; 90: 379
  • 7 Segal R. Milo-Goldzweig I. Sokoloff S. Zaitschek DV. J. Chem. Soc. C 1967; 2402
  • 8 Hopkins CY. Ewing DF. Chisholm MJ. Can. J. Chem. 1967; 45: 1425
  • 9 Takanashi M. Takizawa Y. Phytochemistry 1988; 27: 1224
  • 10 Hirano T. Gotoh M. Oka K. Life Sci. 1994; 55: 1061
  • 11 Sheen W.-S. Tsai IL. Teng C.-M. Chen I.-S. Phytochemistry 1994; 36: 213
  • 12 Kim J.-K. Jun J.-G. J. Cell. Biochem. 2011; 112: 3816
  • 13 Liu J. Dumontet V. Simonin A.-L. Iorga BI. Guerineau V. Litaudon M. Nguyen VH. Gueritte F. J. Nat. Prod. 2011; 74: 2081

    • For syntheses of egonol and homoegonol, see:
    • 14a Rao ML. N. Murty VN. Eur. J. Org. Chem. 2016; 2177
    • 14b More KR. Mali RS. Tetrahedron 2016; 72: 7496
    • 14c Naveen M. Reddy UC. Hussain MM. Chaitanya M. Narayanaswamya G. J. Heterocycl. Chem. 2013; 50: 1064
    • 14d Duan X.-F. Shen G. Zhang ZB. Synthesis 2010; 1181
    • 14e Choi DH. Hwang JW. Lee HS. Yang DM. Jun J.-G. Bull. Korean Chem. Soc. 2008; 29: 1594
    • 14f Pal G. Venkateswaran RV. J. Chem. Res., Synop. 2003; 142
    • 14g Mali RS. Massey AP. J. Chem. Res., Synop. 1998; 230
    • 14h Aoyagi Y. Mizusaki T. Hatori A. Asakura T. Aihara T. Inaba S. Hayatsu K. Ohta A. Heterocycles 1995; 41: 1077
    • 14i Schreiber FG. Stevenson R. J. Chem. Soc., Perkin Trans. 1 1976; 1514
    • 14j Ritchie E. Taylor WC. Aust. J. Chem. 1969; 22: 1329

      For syntheses of ailanthoidol, see:
    • 15a Rao ML. N. Awasthi DK. Banerjee D. Tetrahedron Lett. 2010; 51: 1979
    • 15b Lin S.-Y. Chen C.-L. Lee Y.-J. J. Org. Chem. 2003; 68: 2968
    • 15c Kao C.-L. Chern J.-W. J. Org. Chem. 2002; 67: 6772
    • 15d Kao C.-L. Chern J.-W. Tetrahedron Lett. 2001; 42: 1111
    • 15e Lütjens H. Scammells PJ. Tetrahedron Lett. 1998; 39: 6581
    • 15f Fuganti C. Serra S. Tetrahedron Lett. 1998; 39: 5609
    • 15g Bates RW. Rama-Devi T. Synlett 1995; 1151
    • 16a Garcia-Castro M. Zimmermann S. Sankar MG. Kumar K. Angew. Chem. Int. Ed. 2016; 55: 7586
    • 16b Maier ME. Org. Biomol. Chem. 2015; 13: 5302
    • 16c Serba C. Winssinger N. Eur. J. Org. Chem. 2013; 4195
    • 17a Heravi MM. Zadsirjan V. Hamidi H. Tabar Amiri PH. RSC Adv. 2017; 7: 24470
    • 17b Bhargava S. Rathore D. Lett. Org. Chem. 2017; 14: 381
    • 17c Heravi MM. Zadsirjan V. Curr. Org. Synth. 2016; 13: 780
    • 17d Heravi MM. Zadsirjan V. Adv. Heterocycl. Chem. 2015; 117: 261
    • 17e De Luca L. Nieddu G. Porcheddu A. Giacomelli G. Curr. Med. Chem. 2009; 16: 1
    • 18a Wu X.-F. Li Y. Transition Metal-Catalyzed Benzofuran Synthesis. Elsevier; Amsterdam: 2017
    • 18b Dudnik AS. Gevorgyan V. In Catalyzed Carbon-Heteroatom Bond Formation . Yudin AK. Wiley-VCH; Weinheim: 2011. Chap. 9, 317-410
    • 18c Wu J. In Modern Heterocyclic Chemistry . Alvarez-Builla J. Vaquero JJ. Barluenga J. Wiley-VCH; Weinheim: 2011. Chap. 7, 593-633
    • 18d Cacchi S. Fabrizi G. Goggiamani A. Curr. Org. Chem. 2006; 10: 1423
  • 19 Hercouet A. Le Corre M. Tetrahedron Lett. 1979; 2145
    • 20a Lynn-Marshall A. Alaimo PJ. Chem. Eur. J. 2010; 16: 4970
    • 20b Corma A. Iborra S. Velty A. Chem. Rev. 2007; 107: 2411
    • 20c Mäki-Arvela P. Holmbom B. Salmi T. Murzin DY. Catal. Rev.: Sci. Eng. 2007; 49: 197
  • 21 This synthesis was previously reported.14f A study of the Claisen rearrangement of the allyloxybenzaldehyde intermediate concluded that the desired rearranged product 6 is obtained in low yield (15%). The main product of the reaction was 2-allyl-6-methoxyphenol, a consequence of the most favorable pathway of the process, which is a decarbonylation reaction followed by the Claisen rearrangement. See: Kilenyi SN. Mahaux JM. Van Durme E. J. Org. Chem. 1991; 56: 2591
  • 22 Lancaster M. Green Chemistry. An Introductory Text . Royal Society of Chemistry; London: 2002
  • 23 Kaufman TS. J. Braz. Chem. Soc. 2015; 26: 1055
  • 24 Singh V. Prathap S. J. Chem. Res., Synop. 1997; 422
  • 25 Hamanaka N. Kosuge S. Iguchi S. Synlett 1990; 139
  • 26 Bhanu Prasad AS. Bhaskar Kanth JV. Periasamy M. Tetrahedron 1992; 48: 4623
  • 27 Wilsens CH. R. M. Verhoeven JM. G. A. Noordover BA. J. Hansen MR. Auhl D. Rastogi S. Macromolecules 2014; 47: 3306
  • 28 Thiery E. Aouf C. Belloy J. Harakat D. Le Bras J. Muzart J. J. Org. Chem. 2010; 75: 1771
  • 29 Chen MS. White MC. J. Am. Chem. Soc. 2004; 126: 1346
  • 30 Nakamura A. Nakada M. Synthesis 2013; 45: 1421