Synthesis 2018; 50(15): 3031-3040
DOI: 10.1055/s-0037-1610179
paper
© Georg Thieme Verlag Stuttgart · New York

Oxidative Coupling–Thionation of Amines Mediated by Iron-Based Imidazolium Salts for the Preparation of Thioamides

Patricia Gisbert
Organic Chemistry Department and Instituto de Síntesis Orgánica (ISO), University of Alicante, Apdo. 99, 03080 Alicante, Spain   Email: ipastor@ua.es
,
Organic Chemistry Department and Instituto de Síntesis Orgánica (ISO), University of Alicante, Apdo. 99, 03080 Alicante, Spain   Email: ipastor@ua.es
› Author Affiliations
This work was financially supported by the Spanish Ministry (Ministerio de Economía y Competitividad CTQ2015-66624-P) and the University of Alicante (VIGROB-285).
Further Information

Publication History

Received: 25 April 2018

Accepted: 11 May 2018

Publication Date:
02 July 2018 (online)


Abstract

An efficient and selective multicomponent oxidative coupling, involving the use of two different amines, sodium phosphate, and elemental sulfur have been described for the preparation of thioamides, employing microwave irradiation. The use of an iron(III)-based imidazolium salt is essential as catalyst. Indeed, the iron-based catalyst is involved in the oxidative coupling of the two amines and in the subsequent C–S bond formation. The protocol is useful for a wide variety of primary benzylamines and alkylamines, as coupling partners. Thus, various electron-rich and electron-poor substituents in the aromatic rings and also fused piperidine derivatives, are suitable starting materials in this reaction. Some of the obtained products are important synthetic intermediates for natural products.

Supporting Information

 
  • References

  • 1 Lebel H. Science of Synthesis . Vol. 22. Thieme; Stuttgart: 2005: 141
  • 2 Suzuki Y. Iwata M. Yazaki R. Kumagai N. Shibasaki M. J. Org. Chem. 2012; 77: 4496
    • 3a Guo W.-S. Wen L.-R. Li M. Org. Biomol. Chem. 2015; 13: 1942
    • 3b Nguyen TB. Ermolenko L. Dean WA. Al-Mourabit A. Org. Lett. 2012; 14: 5948
  • 4 Gopinath P. Watanabe T. Shibasaki M. J. Org. Chem. 2012; 77: 9260
    • 5a Banala S. Süssmuth RD. ChemBioChem 2010; 11: 1335
    • 5b Wang F. Langley R. Gulten G. Dover LG. Besra GS. Jacobs WR. Jr. Sacchettini JC. J. Exp. Med. 2007; 204: 73
    • 5c Quemard A. Laneelle GC. Lacave G. Antimicrob. Agents Chemother. 1992; 36: 1316
  • 6 Wang YJ. Szantai-Kis DM. Petersson EJ. Org. Biomol. Chem. 2015; 13: 5074
  • 7 Schaumann E. In Comprehensive Organic Synthesis II . Elsevier; Amsterdam: 2014. 2nd ed. 411
  • 9 Curphey TJ. J. Org. Chem. 2002; 67: 6461
    • 10a Cava MP. Levinson MI. Tetrahedron 1985; 41: 5061
    • 10b Ozturk T. Ertas E. Mert O. Chem. Rev. 2007; 107: 5210
    • 11a Kindler K. Justus Liebigs Ann. Chem. 1923; 431: 187
    • 11b Priebbenow DL. Bolm C. Chem. Soc. Rev. 2013; 42: 7870
    • 12a Nguyen TB. Ermolenko L. Al-Mourabit A. Org. Lett. 2012; 14: 4274
    • 12b Nguyen TB. Adv. Synth. Catal. 2017; 359: 1066
    • 13a Microwave Heating as a Tool for Sustainable Chemistry . Leadbeater NE. CRC Press; Boca Raton: 2011
    • 13b Practical Microwave Synthesis for Organic Chemists . Kappe CO. Dallinger D. Murphree SS. Wiley-VCH; Weinheim: 2009
    • 13c Microwaves in Organic Synthesis . Loupy A. Wiley-VCH; Weinheim: 2002
  • 14 Milen M. Abranyi-Balogh P. Dancso A. Keglevich G. J. Sulfur Chem. 2012; 33: 33
  • 15 Zbruyev OI. Stiasni N. Kappe CO. J. Comb. Chem. 2003; 5: 145
    • 16a Allegue A. Albert-Soriano M. Pastor IM. Appl. Organomet. Chem. 2015; 29: 624
    • 16b Gisbert P. Trillo P. Pastor IM. ChemistrySelect 2018; 3: 887
  • 17 Albert-Soriano M. Pastor IM. Eur. J. Org. Chem. 2016; 5180
  • 18 Albert-Soriano M. Trillo P. Soler T. Pastor IM. Eur. J. Org. Chem. 2017; 6375
  • 19 Trillo P. Pastor IM. Adv. Synth. Catal. 2016; 358: 2929
    • 20a Prodius D. Macaev F. Stingaci E. Pogrebnoi V. Mereacre V. Novitchi G. Kostakis GE. Anson CE. Powell AK. Chem. Commun. 2013; 49: 1915
    • 20b Fei Z. Zhao D. Geldbach TJ. Scopelliti R. Dyson PJ. Chem.–Eur. J. 2004; 10: 4886
    • 21a Bandyopadhyay S. Chandramouli K. Johnson MK. Biochem. Soc. Trans. 2008; 36: 1112
    • 21b Johnson DC. Dean DR. Smith AD. Johnson MK. Annu. Rev. Biochem. 2005; 74: 247
    • 22a Bidart C. Jimenez R. Carlesi C. Flores M. Berg A. Chem. Eng. J. 2011; 175: 388
    • 22b Wasserscheid P. Keim W. Angew. Chem. Int. Ed. 2000; 39: 3772
  • 23 Xie H. Li G. Zhang F. Xiao F. Deng G.-J. Green Chem. 2018; 20: 827
    • 24a Nguyen TB. Retailleau P. Green Chem. 2017; 19: 5371
    • 24b Poupaert J. Duarte S. Colacino E. Depreux P. McCurdy C. Lambert D. Phosphorus, Sulfur Silicon Relat. Elem. 2004; 179: 1959
  • 25 Li H.-Z. Xue W.-J. Yin G.-D. Wu A.-X. Tetrahedron Lett. 2015; 56: 5843
  • 26 Nguyen TB. Tran MQ. Ermolenko L. Al-Mourabit A. Org. Lett. 2014; 16: 310
  • 27 Guntreddi T. Vanjari R. Singh KN. Org. Lett. 2014; 16: 3624
  • 28 Wu J.-W. Wu Y.-D. Dai J.-J. Xu H.-J. Adv. Synth. Catal. 2014; 356: 2429