Synlett 2018; 29(15): 2071-2075
DOI: 10.1055/s-0037-1610225
letter
© Georg Thieme Verlag Stuttgart · New York

Cu-Catalyzed Conjugate Addition of Grignard Reagents to Thiochromones: An Enantioselective Pathway for Accessing 2-Alkylthiochromanones

Shihui Luo
a   Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. of China   Email: wang.j@sustc.edu.cn
,
Ling Meng
a   Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. of China   Email: wang.j@sustc.edu.cn
,
Qingxiong Yang*
b   School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, P. R. of China   Email: yangqx@gznu.edu.cn
,
Jun Wang*
a   Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. of China   Email: wang.j@sustc.edu.cn
› Author Affiliations
This work was supported by the Guangdong “Climbing” Program of China (Project No. pdjh2017c0023) and National 13th Five-year Key R&D Program of China (2016YFC0502607-01)
Further Information

Publication History

Received: 17 May 2018

Accepted after revision: 02 July 2018

Publication Date:
02 August 2018 (online)


Abstract

The enantioselective incorporation of alkyl groups in thiochromones was realized for the first time by a Cu/(R,S)-PPF-P t Bu2-catalyzed conjugate addition of Grignard reagents to thiochromones. With this method, a series of 2-methylthiochromanones were obtained in good yields (up to 96% yield) with moderate-to-good ee values (up to 87% ee). The established method expedites the synthesis of a large library of chiral thiochromanones for further synthetic applications and biological studies.

Supporting Information

 
  • References and Notes

    • 1a The Flavonoids: Advances in Research Since 1980 . Harborne JB. Chapman and Hall; New York: 1988
    • 1b Harborne JB. Williams CA. Nat. Prod. Rep. 1995; 12: 639
    • 1c Le Bail JC. Varnat F. Nicolas JC. Habrioux G. Cancer Lett. 1998; 130: 209
    • 1d Bracke ME. Depypere HT. Boterberg T. Van Marck VL. Vennekens KM. Vanluchene E. Nuytinck M. Serreyn R. Mareel MM. J. Natl. Cancer Inst. 1999; 91: 354
    • 1e Pietta PG. J. Nat. Prod. 2000; 63: 1035
    • 1f Chang LC. Kinghorn AD. In Bioactive Compounds from Natural Sources: Isolation, Characterisation and Biological Properties . Tringali C. Taylor & Francis; London: 2001
    • 1g Flavonoids: Chemistry, Biochemistry and Applications . Andersen ØM. Markham KR. Taylor & Francis; London: 2006
    • 2a Picker K. Ritchie E. Taylor WC. Aust. J. Chem. 1976; 29: 2023
    • 2b Kawasaki M. Yoshikai H. Kakuda H. Toyooka N. Tanaka A. Goto M. Kometani T. Heterocycles 2006; 68: 483
    • 2c Albrecht U. Lalk M. Langer P. Bioorg. Med. Chem. 2005; 13: 1531
    • 2d Krohn K. Michel A. Bahramsari R. Flörke U. Aust HJ. Draeger S. Schulz B. Wray V. Nat. Prod. Lett. 1996; 8: 43
    • 2e Emami S. Banipoulad T. Irannejad H. Foroumadi A. Falahati M. Ashrafi-Khozani M. Sharifynia S. J. Enz. Inhib. Med. Chem. 2014; 29: 263
    • 2f Feng L. Maddox MM. Alam MZ. Tsutsumi LS. Narula G. Bruhn DF. Wu X. Sandhaus S. Lee RB. Simmons CJ. Tse-Dinh Y.-C. Hurdle JG. Lee RE. Sun D. J. Med. Chem. 2014; 57: 8398
    • 2g Seifert T. Malo M. Kokkola T. Engen K. Fridén-Saxin M. Wallén EA. A. Lahtela-Kakkonen M. Jarho EM. Luthman K. J. Med. Chem. 2014; 57: 9870
    • 3a Schneller SW. Thiochromanones and Related Compounds . In Advances in Heterocyclic Chemistry . Vol. 18. Katritzky AR. Boulton AJ. Academic Press; New York: 1975
    • 3b Ramalingam K. Thyvelikakath GX. Berlin KD. Chesnut RW. Brown RA. Durham NN. Ealick SE. Van der Helm D. J. Med. Chem. 1977; 20: 847
    • 3c Philipp A. Jirkovsky I. Martel RR. J. Med. Chem. 1980; 23: 1372
    • 3d Holshouser MH. Loeffler LJ. Hall IH. J. Med. Chem. 1981; 24: 853
    • 3e Wang HK. Bastow KF. Cosentino LM. Lee KH. J. Med. Chem. 1996; 39: 1975
    • 3f Dhanak D. Keenan RM. Burton G. Kaura A. Darcy MG. Shah DH. Ridgers LH. Breen A. Lavery P. Tew DG. West A. Bioorg. Med. Chem. Lett. 1998; 8: 3677
    • 3g Nussbaumer P. Lehr P. Billich A. J. Med. Chem. 2002; 45: 4310
    • 3h Soni DV. Jacobberger JW. Cell Cycle 2004; 3: 349
    • 3i Kataoka T. Watanabe S. Mori E. Kadomoto R. Tanimura S. Kohno M. Bioorg. Med. Chem. 2004; 12: 2397
    • 4a Goldfarb DS. US Patent 20090163545, 2014
    • 4b Guo C. Fang L. Liu Y. Su X. Li C. Sun L. Luo W. Liang L. Huang Y. CN Patent 101434595B, 2014
  • 5 Hoettecke N. Rotzoll S. Albrecht U. Lalk M. Fischer C. Langer P. Bioorg. Med. Chem. 2008; 16: 10319
  • 6 Choi EJ. Lee JI. Kim GH. Int. J. Mol. Med. 2012; 29: 252
    • 7a Sangeetha S. Muthupandi P. Sekar G. Org. Lett. 2015; 17: 6006
    • 7b Bouisseau A. Glancy J. Willis MC. Org. Lett. 2016; 18: 5676
    • 7c Vaghoo H. Prakash GK. Narayanan A. Choudhary R. Paknia F. Mathew T. Olah GA. Org. Lett. 2015; 17: 6170
    • 7d Palani T. Park K. Song KH. Lee S. Adv. Synth. Catal. 2013; 355: 1160
    • 7e Ali A. Ahmad VU. Liebscher J. Eur. J. Org. Chem. 2001; 529
    • 8a Kaye PT. Mphahlele MJ. Synth. Commun. 1995; 25: 1495
    • 8b Cui D-M. Kawamura M. Shimada S. Hayashi T. Tanaka M. Tetrahedron Lett. 2003; 44: 4007
    • 9a Kumar P. Rao AT. Pandey B. Synth. Commun. 1994; 24: 3297
    • 9b Lemke MK. Schwab P. Fischer P. Tischer S. Witt M. Noehringer L. Rogachev V. Jäger A. Kataeva O. Fröhlich R. Metz P. Angew. Chem. Int. Ed. 2013; 52: 11651
    • 9c Xiong D. Zhou W. Lu Z. Zeng S. Wang J. Chem. Commun. 2017; 53: 6844
    • 10a Feng H. Jeffriesa M. Gravesa B. Grahama S. Pollarda D. Pang G. Chen H. Tetrahedron 2017; 73: 5745
    • 10b Meng L. Jin MY. Wang J. Org. Lett. 2016; 18: 4986
  • 11 Brown MK. Degrado SJ. Hoveyda AH. Angew. Chem. Int. Ed. 2005; 44: 5306
  • 12 Vila C. Hornillos V. Fañanásmastral M. Feringa BL. Chem. Commun. 2013; 49: 5933
  • 13 Hayashi T. Yamamoto S. Tokunaga N. Angew. Chem. Int. Ed. 2005; 44: 4224
  • 14 Copper-Catalyzed Asymmetric Synthesis . Alexakis A. Krause N. Woodward S. Wiley-VCH; Weinheim: 2014
  • 15 General Procedure for the Addition of Methylmagnesium Bromide to ThiochromonesAn oven-dried vial fitted with a stirring bar was charged with [Cu(MeCN)4]PF6 (3.73 mg, 5 mol%) and (R,S)-PPF-P t Bu2 (6.51 mg, 6 mol%) in DCM (4.0 mL) and the mixture was stirred at rt for 30 min. Then, thiochromone 1a (0.20 mmol) was added and the mixture was then stirred at –75 °C for another 10 min. MeMgBr (0.30 mL, 0.30 mmol, 1.5 equiv; 1 M solution in THF) and iodotrimethylsilane (85 μL, 0.6 mmol, 3.0 equiv) were simultaneously added dropwise to the vial and the resulting mixture was stirred at –75 °C until the reaction was completed. The reaction was quenched with HCl aq (10%) and the mixture was stirred for 30 min at rt. Then, it was extracted with EtOAc and the organic layer was collected and concentrated under vacuum. The residue was purified by chromatography on silica gel (EtOAc/n-pentane 1:80) to obtain the desired products.6-Methoxy-2-methylthiochroman-4-one (3ba)Yellow liquid (29.8 mg, 72% yield). [α]D 25 = –59.320 (c 1.00, CH2Cl2). ee was determined to be 85% by HPLC analysis with a Chiralcel OJ-3 column (hexane/2-propanol 99.5:0.5, 1.0 mL/min, 254 nm); t r (minor) = 36.8 min, t r (major) = 44.6 min. 1H NMR (400 MHz, CDCl3): δ = 7.62 (d, J = 2.9 Hz, 1 H), 7.18 (d, J = 8.7 Hz, 1 H), 7.03 (dd, J = 8.7, 2.9 Hz, 1 H), 3.84 (s, 3 H), 3.62 (dqd, J = 13.7, 6.8, 3.1 Hz, 1 H), 3.02 (dd, J = 16.6, 3.0 Hz, 1 H), 2.76 (dd, J = 16.5, 11.6 Hz, 1 H), 1.44 (d, J = 6.8 Hz, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 194.69, 157.40, 133.23, 131.16, 128.79, 122.50, 111.15, 55.57, 48.00, 36.68, 20.37 ppm. HRMS (ESI-ion trap): m/z: [M + H]+ calcd for C11H13O2S: 209.0631; found: 209.0627.6-fluoro-2-methylthiochroman-4-one (3ia)Yellow liquid (38 mg, 96% yield). [α]D 25 = –85.050 (c 1.00, CH2Cl2). ee was determined to be 73% by HPLC analysis with a Chiralcel OJ-3 column (hexane/2-propanol 97:3, 1.0 mL/min, 254 nm); t r (minor) = 9.0 min, t r (major) = 9.8 min. 1H NMR (400 MHz, CDCl3): δ = 7.78 (dd, J = 9.3, 2.9 Hz, 1 H), 7.24 (dd, J = 8.7, 5.0 Hz, 1 H), 7.14 (ddd, J = 8.7, 7.8, 2.9 Hz, 1 H), 3.72–3.56 (m, 1 H), 3.02 (dd, J = 16.6, 3.0 Hz, 1 H), 2.75 (dd, J = 16.6, 11.6 Hz, 1 H), 1.44 (d, J = 6.8 Hz, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 193.82, 160.62 (d, J = 244 Hz), 137.10 (d, J = 3.0 Hz), 131.90 (d, J = 5.8 Hz), 129.39 (d, J = 6.9 Hz), 121.52 (d, J = 23 Hz), 115.13 (d, J = 22 Hz), 47.68, 36.76 20.44 ppm. HRMS (ESI-ion trap): m/z: [M + H]+ calcd for C10H10OFS: 197.0431; found: 197.0424.