Synthesis 2019; 51(14): 2829-2838 DOI: 10.1055/s-0037-1610260
© Georg Thieme Verlag Stuttgart · New York
Polydopamine: An Emerging Material in the Catalysis of Organic Transformations
Attila Kunfi
a
Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., 1117 Budapest, Hungary Email:
london.gabor@ttk.mta.hu
b
Department of Organic Chemistry, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary
,
Gábor London*
a
Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., 1117 Budapest, Hungary Email:
london.gabor@ttk.mta.hu
› Author Affiliations Financial support from the National Research, Development and Innovation Office, Hungary (NKFIH Grant FK 123760) is gratefully acknowledged. G.L. acknowledges the János Bolyai Research Scholarship from the Hungarian Academy of Sciences.
Published as part of the special section on the Bürgenstock conference 2018
Abstract
Polydopamine, a ‘mussel-inspired’ polymer, has been explored extensively in materials science as a universal coating. However, as an easily available, stable and environmentally benign material, it has recently been discovered to demonstrate catalytic applications. In this short review, we briefly discuss the main approaches employing polydopamine in the catalysis of organic transformations. These include metal/polydopamine-type systems and metal-free approaches that exploit the acid/base properties of this versatile polymer.
1 Introduction
2 PDA and Metal Catalysis
2.1 Reduction of Nitroaryl Compounds to Anilines
2.2 Reduction of Carbonyl Compounds to Alcohols
2.3 Suzuki and Heck Coupling Reactions
2.4 Other Reactions Catalyzed by M/PDA-Type Systems
3 PDA as a Catalyst Itself
4 Conclusion
Key words
polydopamine -
catalysis -
reduction -
cross-coupling -
multicomponent reactions -
metal-free catalysis -
metal nanoparticle catalysis
References
1
Waite JH.
Tanzer ML.
Science 1981; 212: 1038
2
Lee H.
Scherer NF.
Messersmith PB.
Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 12999
3
Lee H.
Dellatore SM.
Miller WM.
Messersmith PB.
Science 2007; 318: 426
4
Waite JH.
Nat. Mater. 2008; 7: 8
5
Liu Y.
Ai K.
Lu L.
Chem. Rev. 2014; 114: 5057
6
Ryu JH.
Messersmith PB.
Lee H.
ACS Appl. Mater. Interfaces 2018; 10: 7523
7
Schanze KS.
Lee H.
Messersmith PB.
ACS Appl. Mater. Interfaces 2018; 10: 7521
8
Wei Q.
Zhang F.
Li J.
Li B.
Zhao C.
Polym. Chem. 2010; 1: 1430
9
Ball V.
Del Frari D.
Toniazzo V.
Ruch D.
J. Coll. Interface Sci. 2012; 386: 366
10
Du X.
Li L.
Li J.
Yang C.
Frenkel N.
Welle A.
Heissler S.
Nefedov A.
Grunze M.
Levkin PA.
Adv. Mater. 2014; 26: 8029
11
Ponzio F.
Barthes J.
Bour J.
Michel M.
Bertani P.
Hemmerlé J.
d’Ischia M.
Ball V.
Chem. Mater. 2016; 28: 4697
12
Hong S.
Na YS.
Choi S.
Song IT.
Kim WY.
Lee H.
Adv. Funct. Mater. 2012; 22: 4711
13
Della Vecchia NF.
Avolio R.
Alfè M.
Errico ME.
Napolitano A.
d’Ischia A.
Adv. Funct. Mater. 2013; 23: 1331
14
Liebscher J.
Mrówczyński R.
Scheidt HA.
Filip C.
Hădade ND.
Turcu R.
Bende A.
Beck S.
Langmuir 2013; 29: 10539
15
Lee M.
Kim JU.
Lee JS.
Lee BI.
Shin J.
Park CB.
Adv. Mater. 2014; 26: 4463
16
McCloskey BD.
Park HB.
Jua H.
Rowe BW.
Miller DJ.
Freeman BD.
J. Membr. Sci. 2012; 413-414: 82
17
Mu J.
Hou C.
Wang H.
Li Y.
Zhang Q.
Zhu M.
Sci. Adv. 2015; 1: e1500533
18
Wang B.
Wang G.
Zhao B.
Chen J.
Zhang X.
Tang R.
Chem. Sci. 2014; 5: 3463
19
Ball V.
Catal. Today 2018; 301: 196
20
Baeza A.
Guillena G.
Ramón DJ.
ChemCatChem 2016; 8: 49
21
Aditya T.
Pal A.
Pal T.
Chem. Commun. 2015; 51: 9410
22
Zeng T.
Zhang X.
Niu H.
Ma Y.
Li W.
Cai Y.
App. Catal. B 2013; 134-135: 26
23
Liu R.
Guo Y.
Odusote G.
Qu F.
Priestley RD.
ACS Appl. Mater. Interfaces 2013; 5: 9167
24
Luo J.
Zhang N.
Liu R.
Liu X.
RSC Adv. 2014; 4: 64816
25
Kim I.
Son HY.
Yang MY.
Nam YS.
ACS Appl. Mater. Interfaces 2015; 7: 14415
26
Cao J.
Mei S.
Jia H.
Ott A.
Ballauff M.
Lu Y.
Langmuir 2015; 31: 9483
27
Zhao Y.
Yeh Y.
Liu R.
You J.
Qu F.
Solid State Sci. 2015; 45: 9
28
Ni Y.
Tong G.
Wang J.
Li H.
Chen F.
Yua C.
Zhou Y.
RSC Adv. 2016; 6: 40698
29
Wei Q.
Shi R.
Lu D.
Lei Z.
RSC Adv. 2016; 6: 29245
30
Wu Z.
Lin H.
Wang Y.
Yu X.
Li J.
Xiong Z.
Wang Y.
Huang Y.
Chen T.
Liu F.
RSC Adv. 2016; 6: 62302
31
Yu J.
Lu S.
Xu W.
He G.
He D.
Appl. Organomet. Chem. 2017; 31: 3785
32
Zhang J.
Fang Q.
Duan J.
Xu H.
Xu H.
Xuan S.
Langmuir 2018; 34: 4298
33
Zeng Z.
Wen M.
Yu B.
Ye G.
Huo X.
Lu Y.
Chen J.
ACS Appl. Mater. Interfaces 2018; 10: 14735
34
Choi GH.
Rhee DK.
Park AR.
Oh MJ.
Hong S.
Richardson JJ.
Guo J.
Caruso F.
Yoo PJ.
ACS Appl. Mater. Interfaces 2016; 8: 3250
35
Lu S.
Yu J.
Cheng Y.
Wang Q.
Barras A.
Xu W.
Szunerits S.
Cornu D.
Boukherroub R.
Appl. Surf. Sci. 2017; 411: 163
36
Cao E.
Duan W.
Wang F.
Wang A.
Zheng Y.
Carbohydr. Polym. 2017; 158: 44
37
Du L.
Guo A.
Cai A.
Micro Nano Lett. 2018; 13: 518
38
Zeng Y.
Liu W.
Wang Z.
Singamaneni S.
Wang R.
Langmuir 2018; 34: 4036
39
Song Y.
Jiang H.
Wang B.
Kong Y.
Chen J.
ACS Appl. Mater. Interfaces 2018; 10: 1792
40
Das TK.
Ganguly S.
Bhawal P.
Remanan S.
Mondal S.
Das NC.
Appl. Nanosci. 2018; 8: 173
41
Ma J.-X.
Yang H.
Li S.
Ren R.
Li J.
Zhang X.
Ma J.
RSC Adv. 2015; 5: 97520
42
Xi J.
Xiao J.
Xiao F.
Jin Y.
Dong Y.
Jing F.
Wang S.
Sci. Rep. 2016; 6: 21904
43
Liu Y.
Li G.
Qin R.
Chen D.
Langmuir 2016; 32: 13675
44
Kunfi A.
Szabó V.
Mastalir Á.
Bucsi I.
Mohai M.
Németh P.
Bertóti I.
London G.
ChemCatChem 2017; 9: 3236
45
Fu P.
Xiao Z.
Liu Y.
Wang L.
Zhang X.
Li G.
ChemistrySelect 2018; 3: 3351
46
Bian S.-W.
Liu S.
Chang L.
J. Mater. Sci. 2016; 51: 3643
47
Yu X.
Cheng G.
Zheng S.-Y.
Sci. Rep. 2016; 6: 25459
48
Rong Y.
Dandapat A.
Huang Y.
Sasson Y.
Zhang L.
Dai L.
Zhang J.
Guoc Z.
Chen T.
RSC Adv. 2016; 6: 10713
49
Ye W.
Yu J.
Zhou Y.
Gao D.
Wang D.
Wang C.
Xue D.
Appl. Catal. B 2016; 181: 371
50
Gong W.
Su L.
Zhang X.
Chem. Commun. 2015; 51: 6333
51
Bian S.-W.
Liu S.
Guo M.-X.
Xu L.-L.
Chang L.
RSC Adv. 2015; 5: 11913
52
Zhang Q.
Zhou C.
Huang A.
RSC Adv. 2015; 5: 91056
53
Guo X.
Zhang M.
Zheng J.
Xu J.
Hayat T.
Alharbi NS.
Xie B.
Xiong S.
Dalton Trans. 2017; 46: 11598
54
Wang J.
Zhang M.
Xu J.
Zheng J.
Hayat T.
Alharbi NS.
Dalton Trans. 2018; 47: 279
55
Feng H.
Zhu X.
Chen R.
Liao Q.
Liu J.
Li L.
Chem. Eng. J. 2016; 306: 1017
56
Chen G.
Zhu X.
Chen R.
Liao Q.
Ye D.
Feng H.
Liu J.
Liu M.
Chem. Eng. J. 2018; 334: 1897
57
Ma A.
Xie Y.
Xu J.
Zeng H.
Xu H.
Chem. Commun. 2015; 51: 1469
58
Zhang M.
Li G.
Sun X.
Jiang Y.
Zhang X.
J. Mater. Chem. A 2017; 5: 20789
59
Bakirci G.
Yilmaz M.
Babur E.
Ozden D.
Demirel G.
Catal. Commun. 2017; 91: 48
60
Dubey AV.
Kumar AV.
RSC Adv. 2016; 6: 46864
61
Xie A.
Zhang K.
Wu F.
Wang N.
Wang Y.
Wang M.
Catal. Sci. Technol. 2016; 6: 1764
62
Kunfi A.
May Z.
Németh P.
London G.
J. Catal. 2018; 361: 84
63
Li Y.
Xu L.
Xu B.
Mao Z.
Xu H.
Zhong Y.
Zhang L.
Wang B.
Sui X.
ACS Appl. Mater. Interfaces 2017; 9: 17155
64
Fei X.
Kong W.
Chen X.
Jiang X.
Shao Z.
Lee JY.
ACS Catal. 2017; 7: 2412
65
Farzad E.
Veisi H.
J. Ind. Eng. Chem. 2018; 60: 114
66
Ma R.
Yang P.
Ma Y.
Bian F.
ChemCatChem 2018; 10: 1446
67
Kim Y.-O.
You JM.
Jang H.-S.
Choi SK.
Jung BY.
Kang O.
Kim JW.
Lee Y.-S.
Tetrahedron Lett. 2017; 58: 2149
68
GhavamiNejad A.
Kalantarifard A.
Yang GS.
Kim CS.
Microporous Mesoporous Mater. 2016; 225: 296
69
Li K.
Du M.
Ji P.
ACS Sustainable Chem. Eng. 2018; 6: 5636
70
Lei Z.
Deng Y.
Wang C.
J. Mater. Chem. A 2018; 6: 3258
71
Mrówczyński R.
Bunge A.
Liebscher J.
Chem. Eur. J. 2014; 20: 8647
72
Yang Z.
Sun J.
Liu X.
Su Q.
Liu Y.
Li Q.
Zhang S.
Tetrahedron Lett. 2014; 55: 3239
73
Du Y.
Yang H.-C.
Xu X.-L.
Wu J.
Xu Z.-K.
ChemCatChem 2015; 7: 3822
74
Vaish A.
Vandera DJ.
Richter LJ.
Dimitriou M.
Steffens KL.
Walker ML.
Chem. Commun. 2015; 51: 6591
75
Mrówczyński R.
Nan A.
Turcu R.
Leistner J.
Liebscher J.
Macromol. Chem. Phys. 2015; 216: 211
76
Kim JH.
Lee M.
Park CB.
Angew. Chem. Int. Ed. 2014; 53: 6364