Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2021; 53(13): 2229-2239
DOI: 10.1055/s-0037-1610765
DOI: 10.1055/s-0037-1610765
paper
Rh(III)-Catalyzed Olefination and Alkylation of Arenes with Maleimides: A Tunable Strategy for C(sp2)–H Functionalization
This work was financially supported by the National Natural Science Foundation of China (21772061) and the Excellent Young Talents Fund Program of Higher Education Institutionsof Anhui Province (gxyq2020015).
Abstract
We herein report a new nitrogen-directed Rh(III)-catalyzed C(sp2)–H bond functionalization of N-nitrosoanilines and azoxybenzenes with maleimides as a coupling partner, in which the olefination/alkylation process can be finely controlled at room temperature by variation of the reaction conditions. This method shows excellent functional group tolerance, and presents a mild access to the resulting olefination/alkylation products in moderate to good yields.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610765.
- Supporting Information
- CIF File
Publication History
Received: 20 November 2020
Accepted after revision: 27 January 2021
Article published online:
15 February 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
- 1b Ackermann L. Acc. Chem. Res. 2014; 47: 281
- 1c Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
- 1d Li H, Miao T, Wang M, Li P, Wang L. Synlett 2016; 27: 1635
- 1e Yang Y, Lan J, You J. Chem. Rev. 2017; 117: 8787
- 1f Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Chem. Rev. 2017; 117: 9333
- 1g Mishra NK, Sharma S, Park J, Han S, Kim IS. ACS Catal. 2017; 7: 2821
- 1h Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
- 1i Ma C, Fang P, Mei T.-S. ACS Catal. 2018; 8: 7179
- 1j Liao G, Zhou T, Yao Q.-J, Shi BF. Chem. Commun. 2019; 55: 8514
- 1k Liao G, Zhang T, Lin Z.-K, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 19773
- 1l Zhao Q, Meng G, Nolan SP, Szostak M. Chem. Rev. 2020; 120: 1981
- 2a Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
- 2b Caro-Diaz EJ. E, Urbano M, Buzard DJ, Jones MR. Bioorg. Med. Chem. Lett. 2016; 26: 5378
- 2c Xing Y.-Y, Liu J.-B, Sun Q.-M, Sun C.-Z, Huang F, Chen D.-Z. J. Org. Chem. 2019; 84: 10690
- 2d Han F, Xun S, Jia L, Zhang Y, Zou L, Hu X. Org. Lett. 2019; 21: 5907
- 2e Guo S, Sun L, Liu Y, Ma N, Zhang X, Fan X. Org. Lett. 2019; 21: 4082
- 2f Wang D, Dong B, Wang Y, Qian J, Zhu J, Zhao Y, Shi Z. Nat. Commun. 2019; 10: 3539
- 2g Zhang S.-K, Struwe J, Hu L, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 3178
- 2h Wang Q, Zhang W.-W, Song H, Wang J, Zheng C, Gu Q, You S.-L. J. Am. Chem. Soc. 2020; 142: 15678
- 2i Chang R, Chen Y, Yang W, Zhang Z, Guo Z, Li Y. J. Org. Chem. 2020; 85: 13191
- 2j Ye X, Wang C, Zhang S, Wei J, Shan C, Wojtas L, Xie Y, Shi X. ACS Catal. 2020; 10: 11693
- 2k Li Y, Zhang P, Liu Y.-J, Yu Z.-X, Shi B.-F. ACS Catal. 2020; 10: 8212
- 3a Henry MC, Mostafa MA. B, Sutherland A. Synthesis 2017; 49: 4586
- 3b Ping Y, Chen Z, Ding Q, Peng Y. Synthesis 2017; 49: 2015
- 3c Weng Z, Fang X, He M, Gu L, Lin J, Li Z, Ma W. Org. Lett. 2019; 21: 6310
- 3d Xu M, Yuan Y, Wang Y, Tao Q, Wang C, Li Y. Org. Lett. 2019; 21: 6264
- 3e Tan G, Wu Y, Shi Y, You J. Angew. Chem. Int. Ed. 2019; 58: 7440
- 3f Yan X, Zhao P, Liang H, Xie H, Jiang J, Gou S, Wang J. Org. Lett. 2020; 22: 3219
- 3g Lapuh MI, Mazeh S, Besset T. ACS Catal. 2020; 10: 12898
- 4a Konstantinova LS, Knyazeva EA, Obruchnikova NV, Gatilov YV, Zibarev AV, Rakitin OA. Tetrahedron Lett. 2013; 54: 3075
- 4b Hubrich J, Himmler T, Rodefeld L, Ackermann L. ACS Catal. 2015; 5: 4089
- 4c Lin C, Chen Z, Liu Z, Zhang Y. Adv. Synth. Catal. 2018; 360: 519
- 4d Xie H, Shao Y, Gui J, Lan J, Liu Z, Ke Z, Deng Y, Jiang H, Zeng W. Org. Lett. 2019; 21: 3427
- 4e Rej N, Chatani N. Angew. Chem. Int. Ed. 2019; 58: 8304
- 4f Kumar GS, Khot NP, Manmohan Kapur M. Adv. Synth. Catal. 2019; 361: 73
- 4g Li L, Zhang F, Deng G.-J, Gong H. Org. Lett. 2018; 20: 7321
- 4h Jiang Y, Li P, Zhao J, Liu B, Li X. Org. Lett. 2020; 22: 7475
- 5a Liu B, Fan Y, Gao Y, Sun C, Xu C, Zhu J. J. Am. Chem. Soc. 2013; 135: 468
- 5b Yu J, Yang X, Wu C, Su W. J. Org. Chem. 2020; 85: 1009
- 5c Kannaboina P, Kumar KA, Das P. Org. Lett. 2016; 18: 900
- 5d Lu M.-Z, Chen X.-R, Xu H, Dai H.-X, Yu J.-Q. Chem. Sci. 2018; 9: 1311
- 5e Meng K, Sun Y, Zhang J, Zhang K, Ji X, Ding L, Zhong G. Org. Lett. 2019; 21: 8219
- 5f Song H, Li Y, Yao Q.-J, Jin L, Liu L, Liu Y.-H, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 6576
- 5g Yu Z, Zhang Y, Tang J, Zhang L, Liu Q, Li Q, Gao G, You J. ACS Catal. 2020; 10: 203
- 6a Hyster TK, Rovis T. J. Am. Chem. Soc. 2010; 132: 10565
- 6b Shibata K, Natsui S, Chatani N. Org. Lett. 2017; 19: 2234
- 6c Zhou T, Wang Y, Li B, Wang B. Org. Lett. 2016; 18: 5066
- 6d Zheng J, Breit B. Org. Lett. 2018; 20: 1866
- 6e Tian M, Bai D, Zheng G, Chang J, Li X. J. Am. Chem. Soc. 2019; 141: 9527
- 6f Xu F, Song Y, Zhu W, Liu C, Lu Y.-Z, Du M. Chem. Commun. 2020; 56: 11227
- 6g Sun X, Zhao W, Li B.-J. Chem. Commun. 2020; 56: 1298
- 7a Morita T, Akita M, Satoh T, Kakiuchi F, Miura M. Org. Lett. 2016; 18: 4598
- 7b Han S, Park J, Kim S, Lee SH, Sharma S, Mishra NK, Jung YH, Kim IS. Org. Lett. 2016; 18: 4666
- 7c Zhang Z, Han S, Tang M, Ackermann L, Li J. Org. Lett. 2017; 19: 3315
- 7d Chen X, Ren J, Xie H, Sun W, Sun M, Wu B. Org. Chem. Front. 2018; 5: 184
- 7e Zhao J, Pi C, You C, Wang Y, Cui X, Wu Y. Eur. J. Org. Chem. 2018; 6919
- 7f Tian T, Dong A.-S, Chen D, Cao X.-T, Wang G. Org. Biomol. Chem. 2019; 17: 7664
- 7g Manoharan R, Logeswaran R, Jeganmohan M. J. Org. Chem. 2019; 84: 14830
- 7h Li B, Guo C, Shen N, Zhang X, Fan X. Org. Chem. Front. 2020; 7: 3698
- 7i Wan T, Pi C, Wu Y, Cui X. Org. Lett. 2020; 22: 6484
- 8 He Q, Yamaguchi T, Chatani N. Org. Lett. 2017; 19: 4544
- 9a Mandal R, Emayavaramban B, Sundararaju B. Org. Lett. 2018; 20: 2835
- 9b Banjare SK, Nanda T, Ravikumar PC. Org. Lett. 2019; 21: 8138
- 10 Sherikar MS, Kapanaiah R, Lanke V, Prabhu KR. Chem. Commun. 2018; 54: 11200
- 11a Zhou Y, Liang H, Sheng Y, Wang S, Gao Y, Zhan L, Zheng Z, Yang M, Liang G, Zhou J, Deng J, Song Z. J. Org. Chem. 2020; 85: 9230
- 11b Ghosh AK, Samanta S, Ghosh P, Neogi S, Hajra A. Org. Biomol. Chem. 2020; 18: 3093
- 12a Li H, Li P, Wang L. Org. Lett. 2013; 15: 620
- 12b Li H, Li P, Zhao Q, Wang L. Chem. Commun. 2013; 49: 9170
- 12c Deng H, Li H, Wang L. Org. Lett. 2015; 17: 2450
- 12d Deng H, Li H, Wang L. Org. Lett. 2016; 18: 3110
- 12e Li H, Deng H. Synthesis 2017; 49: 2711
- 12f Zhang W, Deng H, Li H. Org. Chem. Front. 2017; 4: 2202
- 12g Deng H, Li H, Zhang W, Wang L. Chem. Commun. 2017; 53: 10322
- 13a Chen Y, Zhang R, Peng Q, Xu L, Pan X. Chem. Asian J. 2017; 12: 2804
- 13b Tian M, Yang X, Zhang B, Li X. Org. Chem. Front. 2018; 5: 3406
- 14 CCDC 2043831 (3a) and CCDC 2043409 (4b) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 15 Han S, Mishra N, Jo H, Oh Y, Jeon M, Kim S, Kim W, Lee J, Kim H, Kim I. Adv. Synth. Catal. 2017; 359: 2396
- 16 He S, Tan G, Lou A, You J. Chem. Commun. 2018; 54: 7794
For selected reviews, see:
For selected examples, see:
For early works on isomerization involving the nitroso group, see: