Subscribe to RSS

DOI: 10.1055/s-0037-1611663
Air-Stable Secondary Phosphine Oxides for Nickel-Catalyzed Cross-Couplings of Aryl Ethers by C–O Activation
Publication History
Received: 02 December 2018
Accepted after revision: 06 January 2019
Publication Date:
15 January 2019 (online)
Published as part of the 30 Years SYNLETT – Pearl Anniversary Issue
Abstract
Air- and moisture-stable secondary phosphine oxides (SPOs) enabled nickel-catalyzed Kumada–Corriu cross-couplings of various arylmethyl ethers at room temperature by challenging C–O activation.
#
Transition-metal-catalyzed cross-coupling reactions have emerged as a uniquely powerful tool for the assembly of substituted biaryl motifs.[1] Thus far, these cross-couplings have heavily relied on aryl halides as electrophilic coupling reagents. In contrast, easily accessible phenol-based electrophiles have recently undergone a renaissance as attractive alternatives.[2] On the basis of Wenkert’s early studies from 1979,[3] the considerable potential of phenol-derived substrates has only recently been fully recognized. Thus, versatile cross-couplings have been realized with challenging carbamates, carbonates, sulfamates, silyloxyarenes, esters and ethers, among others, prominently featuring nickel catalysis.[4] Generally, these nickel catalysts largely require electron-rich tertiary phosphines as stabilizing ligands to guarantee efficacy in the key C–O bond scission.[4] Unfortunately, these electron-rich tertiary phosphines are usually highly air-sensitive, with a documented half-life for the aerobic oxidation of tri-t-butyl-phosphine of a few minutes.[5]
The (heteroatom-substituted) secondary phosphine oxides (HA)SPOs represent uniquely powerful ancillary preligands for metal catalysis because of their unique features, including the air- and moisture-stable nature, among others.[6] Notably, air-stable SPOs undergo a self-assembly process in the presence of transition metals to generate a monoanionic bidentate chelate coordination environment (Scheme [1, a]).[6] While Ackermann and others have unraveled the considerable potential of SPO complexes towards a wealth of efficient cross-coupling reactions with various aryl halides,[7] the possibility of employing air-stable SPO preligands for more challenging C–O activations with aryl ethers has thus far proven elusive. Within our program on sustainable transition-metal-catalyzed transformations[8] and selective C–O activation,[9] we hence became attracted to probing the unprecedented use of air-stable SPOs preligands for cross-couplings with easily available aryl ethers, the result of which we report herein. Notable features of our findings include (i) air- and moisture-stable SPOs for efficient C–O activations, (ii) earth-abundant nickel catalysis, and (iii) exceedingly mild reaction conditions at room temperature (Scheme [1, b]).


We initiated our studies by probing reaction conditions for the envisioned cross-coupling of ether 1a with Ni(acac)2 and Ph2P(O)H (L1) in toluene at a room temperature of 23 °C (Table [1], entry 1). Among a variety of preligands and solvents, the electron-rich HASPO L7 as well as (n-Bu)2P(O)H (L8) and THF gave optimal results, respectively (entries 2–13). NiCl2(DME) proved to be most effective (entries 14–17). It is noteworthy that under otherwise identical reaction conditions, the bidentate ligand dppp featured a significantly inferior performance (entry 18). A control experiment verified the essential role of the nickel catalyst (entry 19).
a Reaction conditions: 1a (0.50 mmol), p-TolMgBr (0.75 mmol), [Ni] (5.0 mol%), (HA)SPO (10 mol%), solvent (1.5 mL), 23 °C, 16 h; yield of isolated product given; n.r. = no reaction.
b SPO L8 (5.0 mol%).
c dppp (5.0 mol%).
Having the optimized reaction conditions for the nickel/SPO-catalyzed C–O activation in hand, we tested its versatility with a representative set of ethers 1 (Scheme [2]). Thus, a variety of naphthyl ethers 1 were identified as viable substrates for the Kumada–Corriu cross-coupling to deliver the desired products 2 with high catalytic efficacy. Notably, the nickel catalyst derived from the air-stable SPO L8 even proved amenable to the chemoselective synthesis of biaryl 2b and the sterically congested mesityl nucleophiles with comparable levels of activity (2d and 2i).


Based on our previous literature reports,[6c] [d] [10] the working mode of the air-stable SPO-enabled C–O activation is suggested to initially involve the formation of complex 3 through self-assembly, along with the subsequent C–O activation by the key hetero-bimetallic intermediate 4 (Scheme [3]).


In summary, we have reported on the first use of air-stable secondary phosphine oxides (SPOs) for challenging cross-couplings of aryl ethers by C–O activation.[11] Thus, in situ generated nickel catalysts enabled efficient Kumada–Corriu arylations of naphthyl ethers at room temperature, even when using sterically hindered aryl nucleophiles.
#
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611663.
- Supporting Information
-
References and Notes
- 1a Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587
- 1b Johansson Seechurn C. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
- 1c Modern Arylation Methods . 2nd ed; Ackermann L. Wiley-VCH; Weinheim: 2009
- 1d Beller M, Bolm C. Transition Metals for Organic Synthesis . Wiley-VCH; Weinheim: 2004
- 1e Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 2 Kozhushkov SI, Potukuchi HK, Ackermann L. Catal. Sci. Technol. 2013; 3: 562
- 3a Wenkert E, Michelotti EL, Swindell CS, Tingoli M. J. Org. Chem. 1984; 49: 4894
- 3b Wenkert E, Michelotti EL, Swindell CS. J. Am. Chem. Soc. 1979; 101: 2246
- 4a Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717
- 4b Su B, Cao Z.-C, Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
- 4c Tollefson EJ, Hanna LE, Jarvo ER. Acc. Chem. Res. 2015; 48: 2344
- 4d Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
- 4e Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
- 4f Li BJ, Yu DG, Sun CL, Shi ZJ. Chem. Eur. J. 2011; 17: 1728
- 4g Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita A.-M, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346
- 4h Yu D.-G, Li B.-J, Shi Z.-J. Acc. Chem. Res. 2010; 43: 1486
- 4i Wang T.-H, Ambre R, Wang Q, Lee W.-C, Wang P.-C, Liu Y, Zhao L, Ong T.-G. ACS Catal. 2018; 8: 11368
- 4j Cao Z.-C, Luo Q.-Y, Shi Z.-J. Org. Lett. 2016; 18: 5978
- 4k Zhang J, Xu J, Xu Y, Sun H, Shen Q, Zhang Y. Organometallics 2015; 34: 5792
- 4l Iglesias MJ, Prieto A, Nicasio MC. Org. Lett. 2012; 14: 4318
- 4m Xie L.-G, Wang Z.-X. Chem. Eur. J. 2011; 17: 4972
- 4n Dankwardt JW. Angew. Chem. Int. Ed. 2004; 43: 2428
- 4o Castro LC. M, Chatani N. Chem. Lett. 2015; 44: 410
- 4p Yamaguchi J, Muto K, Itami K. Eur. J. Org. Chem. 2013; 19
- 4q Nakao Y. Chem. Rec. 2011; 11: 242, and references cited therein
- 5 Netherton MR, Fu GC. Org. Lett. 2001; 3: 4295
- 6a Herault D, Nguyen DH, Nuel D, Buono G. Chem. Soc. Rev. 2015; 44: 2508
- 6b Shaikh TM, Weng C.-M, Hong F.-E. Coord. Chem. Rev. 2012; 256: 771
- 6c Ackermann L. Isr. J. Chem. 2010; 50: 652
- 6d Ackermann L. Synthesis 2006; 1557
- 6e Dubrovina NV, Börner A. Angew. Chem. Int. Ed. 2004; 43: 5883
- 7a Ghorai D, Müller V, Keil H, Stalke D, Zanoni G, Tkachenko BA, Schreiner PR, Ackermann L. Adv. Synth. Catal. 2017; 359: 3137
- 7b Hu C.-Y, Chen Y.-Q, Lin G.-Y, Huang M.-K, Chang Y.-C, Hong F.-E. Eur. J. Inorg. Chem. 2016; 3131
- 7c Cano I, Tschan MJ. L, Martínez-Prieto LM, Philippot K, Chaudret B, van Leeuwen PW. N. M. Catal. Sci. Technol. 2016; 6: 3758
- 7d Wellala NP, Guan H. Org. Biomol. Chem. 2015; 13: 10802
- 7e Cano I, Huertos MA, Chapman AM, Buntkowsky G, Gutmann T, Groszewicz PB, van Leeuwen PW. N. M. J. Am. Chem. Soc. 2015; 137: 7718
- 7f Ackermann L, Kapdi AR, Fenner S, Kornhaass C, Schulzke C. Chem. Eur. J. 2011; 17: 2965
- 7g Ackermann L, Potukuchi HK, Kapdi AR, Schulzke C. Chem. Eur. J. 2010; 16: 3300
- 7h Ackermann L, Vicente R, Hofmann N. Org. Lett. 2010; 11: 4274
- 7i Achard T, Giordano L, Tenaglia A, Gimbert Y, Buono G. Organometallics 2010; 29: 3936
- 7j Christiansen A, Selent D, Spannenberg A, Baumann W, Franke R, Börner A. Organometallics 2010; 29: 3139
- 7k Christiansen A, Li C, Garland M, Selent D, Ludwig R, Spannenberg A, Baumann W, Franke R, Börner A. Eur. J. Org. Chem. 2010; 2733
- 7l Ackermann L, Barfüßer S. Synlett 2009; 808
- 7m Yang DX, Colletti SL, Wu K, Song M, Li GY, Shen HC. Org. Lett. 2009; 11: 381
- 7n Billingsley KL, Buchwald SL. Angew. Chem., Int. Ed. Engl. 2008; 47: 4695
- 7o Ackermann L, Born R, Spatz JH, Meyer D. Angew. Chem. Int. Ed. 2005; 44: 7216
- 8a Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019;
- 8b Lorion MM, Maindan K, Kapdi AR, Ackermann L. Chem. Soc. Rev. 2017; 46: 7399
- 8c Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
- 8d Liu W, Ackermann L. ACS Catal. 2016; 6: 3743
- 9a Sauermann N, Loup J, Kootz D, Berkessel A, Ackermann L. Synthesis 2017; 49: 3476
- 9b Song W, Ackermann L. Angew. Chem. Int. Ed. 2012; 51: 8251
- 9c Ackermann L, Pospech J, Potukuchi HK. Org. Lett. 2012; 14: 2146
- 9d Ackermann L, Althammer A, Born R. Angew. Chem. Int. Ed. 2006; 45: 2619
- 9e Moselage M, Sauermann N, Richter S. C, Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 6352
- 10 Ackermann L. Synlett 2007; 507
- 11 Representative Experimental Procedure and Characterization DataA mixture of 2-methoxynaphthalene (1a) (79 mg, 0.5 mmol), [NiCl2(DME)] (6.0 mg, 0.025 mmol, 5.0 mol%), and L8 (8.0 mg, 0.05 mmol, 10.0 mol%) was stirred in THF (1.5 mL) for 2 min at ambient temperature under N2. Then, p-TolMgBr (1.0 m in THF, 0.75 mL, 0.75 mmol) was added, and the resulting solution was stirred for 16 h at ambient temperature. To the reaction was added aqueous HCl (1 m, 5 mL) and then EtOAc (5 mL), and the separated aqueous phase was extracted with EtOAc (2 × 5 mL). The combined organic layers were dried with anhydrous Na2SO4 and concentrated in vacuo. The remaining residue was purified by column chromatography on silica gel (n-hexane) to yield 2a (98 mg, 90%) as a colorless solid. Mp 93–95 °C. IR (ATR): 3054, 3024, 1501, 1351, 893, 856, 811, 748 cm−1. 1H NMR (300 MHz, CDCl3): δ = 8.14 (d, J = 1.4 Hz, 1 H), 8.03–7.93 (m, 3 H), 7.85 (dd, J = 8.5, 1.9 Hz, 1 H), 7.74 (d, J = 8.1 Hz, 2 H), 7.64–7.54 (m, 2 H), 7.40 (dd, J = 8.5, 0.6 Hz, 2 H), 2.53 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 138.5 (Cq), 138.3 (Cq), 137.2 (Cq), 133.8 (Cq), 132.5 (Cq), 129.6 (CH), 128.4 (CH), 128.2 (CH), 127.7 (CH), 127.3 (CH), 126.3 (CH), 125.8 (CH), 125.6 (CH), 125.5 (CH), 21.2 (CH3). MS (EI): m/z (relative intensity) = 218 [M]+ (100), 217 (41), 202 (35). HRMS (EI): m/z [M]+ calcd for [C17H14]+: 218.1096; found: 218.1094.
Representative reviews:
Selected examples:
For general reviews on nickel catalyzed transformations, see:
Select reviews:
-
References and Notes
- 1a Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587
- 1b Johansson Seechurn C. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
- 1c Modern Arylation Methods . 2nd ed; Ackermann L. Wiley-VCH; Weinheim: 2009
- 1d Beller M, Bolm C. Transition Metals for Organic Synthesis . Wiley-VCH; Weinheim: 2004
- 1e Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 2 Kozhushkov SI, Potukuchi HK, Ackermann L. Catal. Sci. Technol. 2013; 3: 562
- 3a Wenkert E, Michelotti EL, Swindell CS, Tingoli M. J. Org. Chem. 1984; 49: 4894
- 3b Wenkert E, Michelotti EL, Swindell CS. J. Am. Chem. Soc. 1979; 101: 2246
- 4a Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717
- 4b Su B, Cao Z.-C, Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
- 4c Tollefson EJ, Hanna LE, Jarvo ER. Acc. Chem. Res. 2015; 48: 2344
- 4d Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
- 4e Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
- 4f Li BJ, Yu DG, Sun CL, Shi ZJ. Chem. Eur. J. 2011; 17: 1728
- 4g Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita A.-M, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346
- 4h Yu D.-G, Li B.-J, Shi Z.-J. Acc. Chem. Res. 2010; 43: 1486
- 4i Wang T.-H, Ambre R, Wang Q, Lee W.-C, Wang P.-C, Liu Y, Zhao L, Ong T.-G. ACS Catal. 2018; 8: 11368
- 4j Cao Z.-C, Luo Q.-Y, Shi Z.-J. Org. Lett. 2016; 18: 5978
- 4k Zhang J, Xu J, Xu Y, Sun H, Shen Q, Zhang Y. Organometallics 2015; 34: 5792
- 4l Iglesias MJ, Prieto A, Nicasio MC. Org. Lett. 2012; 14: 4318
- 4m Xie L.-G, Wang Z.-X. Chem. Eur. J. 2011; 17: 4972
- 4n Dankwardt JW. Angew. Chem. Int. Ed. 2004; 43: 2428
- 4o Castro LC. M, Chatani N. Chem. Lett. 2015; 44: 410
- 4p Yamaguchi J, Muto K, Itami K. Eur. J. Org. Chem. 2013; 19
- 4q Nakao Y. Chem. Rec. 2011; 11: 242, and references cited therein
- 5 Netherton MR, Fu GC. Org. Lett. 2001; 3: 4295
- 6a Herault D, Nguyen DH, Nuel D, Buono G. Chem. Soc. Rev. 2015; 44: 2508
- 6b Shaikh TM, Weng C.-M, Hong F.-E. Coord. Chem. Rev. 2012; 256: 771
- 6c Ackermann L. Isr. J. Chem. 2010; 50: 652
- 6d Ackermann L. Synthesis 2006; 1557
- 6e Dubrovina NV, Börner A. Angew. Chem. Int. Ed. 2004; 43: 5883
- 7a Ghorai D, Müller V, Keil H, Stalke D, Zanoni G, Tkachenko BA, Schreiner PR, Ackermann L. Adv. Synth. Catal. 2017; 359: 3137
- 7b Hu C.-Y, Chen Y.-Q, Lin G.-Y, Huang M.-K, Chang Y.-C, Hong F.-E. Eur. J. Inorg. Chem. 2016; 3131
- 7c Cano I, Tschan MJ. L, Martínez-Prieto LM, Philippot K, Chaudret B, van Leeuwen PW. N. M. Catal. Sci. Technol. 2016; 6: 3758
- 7d Wellala NP, Guan H. Org. Biomol. Chem. 2015; 13: 10802
- 7e Cano I, Huertos MA, Chapman AM, Buntkowsky G, Gutmann T, Groszewicz PB, van Leeuwen PW. N. M. J. Am. Chem. Soc. 2015; 137: 7718
- 7f Ackermann L, Kapdi AR, Fenner S, Kornhaass C, Schulzke C. Chem. Eur. J. 2011; 17: 2965
- 7g Ackermann L, Potukuchi HK, Kapdi AR, Schulzke C. Chem. Eur. J. 2010; 16: 3300
- 7h Ackermann L, Vicente R, Hofmann N. Org. Lett. 2010; 11: 4274
- 7i Achard T, Giordano L, Tenaglia A, Gimbert Y, Buono G. Organometallics 2010; 29: 3936
- 7j Christiansen A, Selent D, Spannenberg A, Baumann W, Franke R, Börner A. Organometallics 2010; 29: 3139
- 7k Christiansen A, Li C, Garland M, Selent D, Ludwig R, Spannenberg A, Baumann W, Franke R, Börner A. Eur. J. Org. Chem. 2010; 2733
- 7l Ackermann L, Barfüßer S. Synlett 2009; 808
- 7m Yang DX, Colletti SL, Wu K, Song M, Li GY, Shen HC. Org. Lett. 2009; 11: 381
- 7n Billingsley KL, Buchwald SL. Angew. Chem., Int. Ed. Engl. 2008; 47: 4695
- 7o Ackermann L, Born R, Spatz JH, Meyer D. Angew. Chem. Int. Ed. 2005; 44: 7216
- 8a Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019;
- 8b Lorion MM, Maindan K, Kapdi AR, Ackermann L. Chem. Soc. Rev. 2017; 46: 7399
- 8c Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
- 8d Liu W, Ackermann L. ACS Catal. 2016; 6: 3743
- 9a Sauermann N, Loup J, Kootz D, Berkessel A, Ackermann L. Synthesis 2017; 49: 3476
- 9b Song W, Ackermann L. Angew. Chem. Int. Ed. 2012; 51: 8251
- 9c Ackermann L, Pospech J, Potukuchi HK. Org. Lett. 2012; 14: 2146
- 9d Ackermann L, Althammer A, Born R. Angew. Chem. Int. Ed. 2006; 45: 2619
- 9e Moselage M, Sauermann N, Richter S. C, Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 6352
- 10 Ackermann L. Synlett 2007; 507
- 11 Representative Experimental Procedure and Characterization DataA mixture of 2-methoxynaphthalene (1a) (79 mg, 0.5 mmol), [NiCl2(DME)] (6.0 mg, 0.025 mmol, 5.0 mol%), and L8 (8.0 mg, 0.05 mmol, 10.0 mol%) was stirred in THF (1.5 mL) for 2 min at ambient temperature under N2. Then, p-TolMgBr (1.0 m in THF, 0.75 mL, 0.75 mmol) was added, and the resulting solution was stirred for 16 h at ambient temperature. To the reaction was added aqueous HCl (1 m, 5 mL) and then EtOAc (5 mL), and the separated aqueous phase was extracted with EtOAc (2 × 5 mL). The combined organic layers were dried with anhydrous Na2SO4 and concentrated in vacuo. The remaining residue was purified by column chromatography on silica gel (n-hexane) to yield 2a (98 mg, 90%) as a colorless solid. Mp 93–95 °C. IR (ATR): 3054, 3024, 1501, 1351, 893, 856, 811, 748 cm−1. 1H NMR (300 MHz, CDCl3): δ = 8.14 (d, J = 1.4 Hz, 1 H), 8.03–7.93 (m, 3 H), 7.85 (dd, J = 8.5, 1.9 Hz, 1 H), 7.74 (d, J = 8.1 Hz, 2 H), 7.64–7.54 (m, 2 H), 7.40 (dd, J = 8.5, 0.6 Hz, 2 H), 2.53 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 138.5 (Cq), 138.3 (Cq), 137.2 (Cq), 133.8 (Cq), 132.5 (Cq), 129.6 (CH), 128.4 (CH), 128.2 (CH), 127.7 (CH), 127.3 (CH), 126.3 (CH), 125.8 (CH), 125.6 (CH), 125.5 (CH), 21.2 (CH3). MS (EI): m/z (relative intensity) = 218 [M]+ (100), 217 (41), 202 (35). HRMS (EI): m/z [M]+ calcd for [C17H14]+: 218.1096; found: 218.1094.
Representative reviews:
Selected examples:
For general reviews on nickel catalyzed transformations, see:
Select reviews:






