Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2019; 51(07): 1578-1584
DOI: 10.1055/s-0037-1611700
DOI: 10.1055/s-0037-1611700
paper
Palladium-Catalyzed C–H Bond Monofluorination of 2-Arylbenzo[d]oxazinone Using Nitrate as Crucial Promoter
National Standardization Project of Traditional Chinese Medicine (No. ZYBZH-Y-JX-27) and China Scholarship Council (No. 201706465059).Further Information
Publication History
Received: 14 October 2018
Accepted after revision: 17 November 2018
Publication Date:
09 January 2019 (online)
Abstract
Monofluorination of 2-arylbenzo[d]oxazinones with N-fluorobenzenesulfonimide (NFSI) was achieved by palladium catalysis in moderate to good yields. Promoted by nitrate, the reaction provides an economic and environmentally friendly strategy. The synthesis of monofluorinated 2-arylbenzo[d]oxazinones has good compatibility with many common functional groups. The plausible mechanism of this monofluorination is discussed.
Key words
2-arylbenzo[d]oxazinones - palladium catalysis - C–H bond functionalization - fluorination - directing groupsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611700.
- Supporting Information
-
References
- 1a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 1b McMurtrey KB, Racowski JM, Sanford MS. Org. Lett. 2012; 14: 4094
- 2a Jia X, Yang D, Zhang S, Cheng J. Org. Lett. 2009; 11: 4716
- 2b Xu N, Li D, Zhang Y, Wang L. Org. Biomol. Chem. 2015; 13: 9083
- 2c Hou L, Chen X, Li S, Cai S, Zhao Y, Sun M, Yang XJ. Org. Biomol. Chem. 2015; 13: 4160
- 2d Song J, Chen W, Zhao Y, Li C, Liang G, Huang L. RSC Adv. 2016; 6: 54984
- 2e Yang Q, Yang SD. ACS Catal. 2017; 7: 5220
- 3a Dick AR, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004; 126: 2300
- 3b Korwar S, Brinkley K, Siamaki AR, Gupton BF, Ellis KC. Org. Lett. 2015; 17: 1782
- 3c Dong J, Liu P, Sun P. J. Org. Chem. 2015; 80: 2925
- 3d Zhang D, Cui X, Yang F, Zhang Q, Zhu Y, Wu Y. Org. Chem. Front. 2015; 2: 951
- 4a Zhang W, Lou S, Liu Y, Xu Z. J. Org. Chem. 2013; 78: 5932
- 4b Liang YF, Li X, Wang X, Yan Y, Feng P, Jiao N. ACS Catal. 2015; 5: 1956
- 4c Zhu D, Yang G, He J, Chu L, Chen G, Gong W, Chen K, Eastgate MD, Yu JQ. Angew. Chem. Int. Ed. 2015; 54: 2497
- 5a Dubost E, Fossey C, Cailly T, Rault S, Fabis F. J. Org. Chem. 2011; 76: 6414
- 5b Santra SK, Banerjee A, Khatun N, Samanta A, Patel BK. RSC Adv. 2015; 5: 11960
- 5c Sun M, Chen X, Zhang L, Sun W, Wang Z, Guo P, Li YM, Yang XJ. Org. Biomol. Chem. 2016; 14: 323
- 5d Dabiri M, Lehi NF, Movahed SK, Khavasi HR. Org. Biomol. Chem. 2017; 15: 6264
- 6a Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
- 6b Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
- 6c Hollingworth C, Gouverneur V. Chem. Commun. 2012; 48: 2929
- 7 Hull KL, Anani WQ, Sanford MS. J. Am. Chem. Soc. 2006; 128: 7134
- 8a Wang XS, Mei TS, Yu JQ. J. Am. Chem. Soc. 2009; 131: 7520
- 8b Chan KS. L, Wasa M, Wang XS, Yu JQ. Angew. Chem. Int. Ed. 2011; 50: 9081
- 9a Lou SJ, Xu DQ, Xu ZY. Angew. Chem. Int. Ed. 2014; 53: 10330
- 9b Lou SJ, Chen Q, Wang YF, Xu DQ, Du XH, He JQ, Mao YJ, Xu ZY. ACS Catal. 2015; 5: 2846
- 10 Lou SJ, Xu DQ, Xia AB, Wang YF, Liu YK, Du XH, Xu ZY. Chem. Commun. 2013; 49: 6218
- 11 Ding QP, Ye CQ, Pu SZ, Cao BP. Tetrahedron 2014; 70: 409
- 12 Lee JB, Kang ME, Kim J, Lee CY, Kee JM, Myung K, Park JU, Hong SY. Chem. Commun. 2017; 53: 10394
- 13 Braun MG, Doyle AG. J. Am. Chem. Soc. 2013; 135: 12990
- 14 Zhu RY, Tanaka K, Li GC, He J, Fu HY, Li SH, Yu JQ. J. Am. Chem. Soc. 2015; 137: 7067
- 15 Zhang Q, Yin XS, Chen K, Zhang SQ, Shi BF. J. Am. Chem. Soc. 2015; 137: 8219
- 16 Chen C, Wang C, Zhang J, Zhao Y. J. Org. Chem. 2015; 80: 942
- 17a Fier PS, Hartwig JF. Science 2013; 342: 956
- 17b Bloom S, Pitts CR, Woltornist R, Griswold A, Holl MG, Lectka T. Org. Lett. 2013; 15: 1722
- 17c Liu W, Groves JT. Angew. Chem. Int. Ed. 2013; 52: 6024
- 17d Truong T, Klimovica K, Daugulis O. J. Am. Chem. Soc. 2013; 135: 9342
- 17e Xia JB, Ma Y, Chen C. Org. Chem. Front. 2014; 1: 468
- 18a Krantz A, Spencer RW, Tam TF, Liak TJ, Copp LJ, Thomas EM, Rafferty SP. J. Med. Chem. 1990; 33: 464
- 18b Yin Z, Wang Z, Wu XF. Org. Lett. 2017; 19: 6232
- 18c Hsieh PW, Hwang TL, Wu CC, Chang FR, Wang TW, Wu YC. Bioorg. Med. Chem. Lett. 2005; 15: 2786
- 19 Waagberg F, Leonardsson G. PCT Int. Appl WO 2015112081 A1 20150730, 2015
- 20 Parrino B, Ciancimino C, Carbone A, Spanò V, Montalbano A, Barraja P, Cirrincione G, Diana P. Tetrahedron 2015; 71: 7332
- 21 Shreder K, Hu Y, Fraser A, Kohono Y, Kojima A, Ishiyama J. PCT Int. Appl WO 2008036379 A2 20080327, 2008
- 22a Marasini BP, Rahim F, Perveen S, Karim A, Khan KM, Rahman A, Choudhary MI. Bioorg. Chem. 2017; 70: 210
- 22b Hedstrom L, Moorman AR, Dobbs J, Abeles RH. Biochemistry 1984; 23: 1753
- 23 Hays SJ, Caprathe BW, Gilmore JL, Amin N, Emmerling MR, Michael W, Nadimpalli R, Nath R, Raser KJ, Stafford D, Watson D, Wang K, Jaen JC. J. Med. Chem. 1998; 41: 1060
- 24 Fenton G, Newton CG, Wyman BM, Bagge P, Dron DI, Riddell D, Jones GD. J. Med. Chem. 1989; 32: 265
- 25 Shang XX, Vu HM, Li XQ. Synthesis 2018; 50: 377
For selected reviews on C–F bond formation, see: