Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(06): 703-708
DOI: 10.1055/s-0037-1611740
DOI: 10.1055/s-0037-1611740
letter
Asymmetric Allylic Amination of Morita–Baylis–Hillman Adducts with Simple Aromatic Amines by Nucleophilic Amine Catalysis
We gratefully acknowledge the financial support from the National Science Foundation of China (21602018, 21272029) and the Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-Aged Teachers and Presidents.
Further Information
Publication History
Received: 14 January 2019
Accepted after revision: 04 February 2019
Publication Date:
26 February 2019 (online)
Abstract
Asymmetric allylic amination of Morita–Baylis–Hillman (MBH) adducts with simple aromatic amines is successfully realized by nucleophilic amine catalysis. A range of substituted α-methylene-β-arylamino esters is accessed in moderate to high yields (up to 88%) and with excellent enantioselectivities (up to 97% ee). Inorganic fluorides are found to be able to improve the enantioselectivity of the allylic amination reaction. A pyrrole-2-carboxylate and a cyclic imide are also compatible with this catalytic system. A chiral 2,3-dihydroquinolin-4-one derivative is easily obtained from the allylic amination product.
Key words
MBH adducts - aromatic amines - asymmetric allylic amination - nucleophilic amine catalysis - inorganic fluoridesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611740.
- Supporting Information
-
References and Notes
- 1a Basavaiah D, Rao AJ, Satyanarayana T. Chem. Rev. 2003; 103: 811
- 1b Sorbetti JM, Clary KN, Rankic DA, Wulff JE, Parvez M, Back TG. J. Org. Chem. 2007; 72: 3326
- 1c Declerck V, Toupet L, Martinez J, Lamaty F. J. Org. Chem. 2009; 74: 2004
- 1d Galeazzi R, Martelli G, Mobbili G, Orena M, Rinaldi S. Org. Lett. 2004; 6: 2571
- 1e Nemoto T, Fukuyama T, Yamamoto E, Tamura S, Fukuda T, Matsumoto T, Akimoto Y, Hamada Y. Org. Lett. 2007; 9: 927
- 1f Murru S, McGough B, Srivastava RS. Org. Biomol. Chem. 2014; 12: 9133
- 1g Reddy RS, Lagishetti C, Kiran IN. C, You H, He Y. Org. Lett. 2016; 18: 3818
- 1h Pathak R, Madapa S, Batra S. Tetrahedron 2007; 63: 451
- 1i Gowrisankar S, Lee HS, Kim JM, Kim JN. Tetrahedron Lett. 2008; 49: 1670
- 2a Wang X, Meng F, Wang Y, Han Z, Chen Y.-J, Liu L, Wang Z, Ding K. Angew. Chem. Int. Ed. 2012; 51: 9276
- 2b Zhou P, Liang Y, Zhang H, Jiang H, Feng K, Xu P, Wang J, Wang X, Ding K, Luo C, Liu M, Wang Y. Eur. J. Med. Chem. 2018; 144: 817
- 2c Liu J, Han Z, Wang X, Wang Z, Ding K. J. Am. Chem. Soc. 2015; 137: 15346
- 2d Zhou P, Liu Y, Zhou L, Zhu K, Feng K, Zhang H, Liang Y, Jiang H, Luo C, Liu M, Wang Y. J. Med. Chem. 2016; 59: 10329
- 2e Benfatti F, Cardillo G, Gentilucci L, Mosconi E, Tolomelli A. Org. Lett. 2008; 10: 2425
- 3a Masson G, Housseman C, Zhu J. Angew. Chem. Int. Ed. 2007; 46: 4614
- 3b Declerck V, Martinez J, Lamaty F. Chem. Rev. 2009; 109: 1
- 3c Basavaiah D, Reddy BS, Badsara SS. Chem. Rev. 2010; 110: 5447
- 4a Liu X, Chai Z, Zhao G, Zhu S. J. Fluorine Chem. 2005; 126: 1215
- 4b Shi M, Ma G.-N, Gao J. J. Org. Chem. 2007; 72: 9779
- 4c Liu X, Zhao J, Jin G, Zhao G, Zhua S, Wang S. Tetrahedron 2005; 61: 3841
- 5a Jiang F, Luo G.-Z, Zhu Z.-Q, Wang C.-S, Mei G.-J, Shi F. J. Org. Chem. 2018; 83: 10060
- 5b Cheng Y, Han Y, Li P. Org. Lett. 2017; 19: 4774
- 5c Zhan G, Shi M.-L, He Q, Lin W.-J, Ouyang Q, Du W, Chen Y.-C. Angew. Chem. Int. Ed. 2016; 55: 2147
- 6a Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
- 6b Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
- 6c Wang Y, Zhang T, Liu L, Wang D, Chen Y. Chin. J. Chem. 2012; 30: 2641
- 6d Wang X, Guo P, Han Z, Wang X, Wang Z, Ding K. J. Am. Chem. Soc. 2014; 136: 405
- 6e Rajesh S, Banerji B, Iqbal J. J. Org. Chem. 2002; 67: 7852
- 6f Wang Y, Liu L, Wang D, Chen Y.-J. Org. Biomol. Chem. 2012; 10: 6908
- 6g Mei G.-J, Li D, Zhou G.-X, Shi Q, Cao Z, Shi F. Chem. Commun. 2017; 53: 10030
- 6h Lu Y.-N, Lan J.-P, Mao Y.-J, Wang Y.-X, Mei G.-J, Shi F. Chem. Commun. 2018; 54: 18527
- 6i Li M.-M, Wei Y, Liu J, Chen H.-W, Lu L.-Q, Xiao W.-J. J. Am. Chem. Soc. 2017; 139: 14707
- 6j Wang Y.-N, Wang B.-C, Zhang M.-M, Gao X.-W, Li T.-R, Lu L.-Q, Xiao W.-J. Org. Lett. 2017; 19: 4094
- 6k Mei G.-J, Bian C.-Y, Li G.-H, Xu S.-L, Zheng W.-Q, Shi F. Org. Lett. 2017; 19: 3219
- 7a Rios R. Catal. Sci. Technol. 2012; 2: 267
- 7b Liu T.-Y, Xie M, Chen Y.-C. Chem. Soc. Rev. 2012; 41: 4101
- 7c Wei Y, Shi M. Chem. Rev. 2013; 113: 6659
- 7d Cui H.-L, Feng X, Peng J, Lei J, Jiang K, Chen Y.-C. Angew. Chem. Int. Ed. 2009; 48: 5737
- 7e Zhang H, Zhang S.-J, Zhou Q.-Q, Dong L, Chen Y.-C. Beilstein J. Org. Chem. 2012; 8: 1241
- 7f Huang J.-R, Cui H.-L, Lei J, Sun X.-H, Chen Y.-C. Chem. Commun. 2011; 47: 4784
- 7g Lu H, Lin J.-B, Liu J.-Y, Xu P.-F. Chem. Eur. J. 2014; 20: 11659
- 7h Lin A, Mao H, Zhu X, Ge H, Tan R, Zhu C, Cheng Y. Chem. Eur. J. 2011; 17: 13676
- 7i Zhang S.-J, Cui H.-L, Jiang K, Li R, Ding Z.-Y, Chen Y.-C. Eur. J. Org. Chem. 2009; 5804
- 7j Pei C.-K, Zhang X.-C, Shi M. Eur. J. Org. Chem. 2011; 4479
- 7k Zhao M.-X, Chen M.-X, Tang W.-H, Wei D.-K, Dai T.-L, Shi M. Eur. J. Org. Chem. 2012; 3598
- 7l Sun W, Ma X, Hong L, Wang R. J. Org. Chem. 2011; 76: 7826
- 7m Huang L, Wei Y, Shi M. Org. Biomol. Chem. 2012; 10: 1396
- 7n Cho C.-W, Kong J.-R, Krische MJ. Org. Lett. 2004; 6: 1337
- 7o Pellissier H. Tetrahedron 2017; 73: 2831
- 7p Zhang T.-Z, Dai L.-X, Hou X.-L. Tetrahedron: Asymmetry. 2007; 18: 1990
- 8a Lee CG, Lee KY, Lee S, Kim JN. Tetrahedron 2005; 61: 1493
- 8b Bakthadoss M, Srinivasan J, Selvakumar R. Aust. J. Chem. 2014; 67: 295
- 8c Ge S.-Q, Hua Y.-Y, Xia M. Synth. Commun. 2010; 40: 1954
- 8d Ge S.-Q, Hua Y.-Y, Xia M. Ultrason. Sonochem. 2009; 16: 743
- 9a Zhao S, Lin J.-B, Zhao Y.-Y, Liang Y.-M, Xu P.-F. Org. Lett. 2014; 16: 1802
- 9b Zhao S, Zhao Y.-Y, Lin J.-B, Xie T, Liang Y.-M, Xu P.-F. Org. Lett. 2015; 17: 3206
- 10a Su W, Raders S, Verkade JG, Liao X, Hartwig JF. Angew. Chem. Int. Ed. 2006; 45: 5852
- 10b Bugarin A, Connell BT. Chem. Commun. 2010; 46: 2644
- 10c Zhu B, Yan L, Pan Y, Lee R, Liu H, Han Z, Huang K.-W, Tan C.-H, Jiang Z. J. Org. Chem. 2011; 76: 6894
- 11 Asymmetric Allylic Amination; General ProcedureA solution of amine 2 (0.05 mmol), MBH carbonate 3 (0.1 mmol), catalyst 1k (0.01 mmol) and CaF2 (0.25 mmol) in p-xylene (0.5 mL) was stirred at room temperature for 72 hours. Then the reaction mixture was directly purified by flash column chromatography (eluting with EtOAc/petroleum ether, 10:1) to afford the product 4.Methyl (R)-2-[Phenyl(phenylamino)methyl]acrylate (4aa) Colorless oil; 80% yield; 92% ee; [α]D 28 = –91.1 (c 0.7, CHCl3). The enantiomeric excess was determined by HPLC analysis with an OD-H column (n-hexane/i-PrOH, 95:5), 1.0 mL/min, λ = 254 nm, t R (major) = 8.57 min, t R (minor) = 10.76 min. 1H NMR (300 MHz, CDCl3): δ = 7.40–7.28 (m, 5 H), 7.20–7.14 (m, 2 H), 6.75–6.70 (m, 1 H), 6.58 (dd, J = 8.4 Hz, J = 0.9 Hz, 2 H), 6.40 (s, 1 H), 5.97 (t, J = 1.2 Hz, 1 H), 5.41 (s, 1 H), 4.16 (s, 1 H), 3.71 (s, 3 H); 13C NMR (100 MHz, CDCl3): δ = 166.8, 146.8, 140.7, 140.0, 129.3, 128.9, 128.0, 127.7, 126.4, 118.0, 113.5, 59.1, 52.1; HRMS (ESI): m/z [M + H]+ calcd for C17H18NO2: 268.1332; found: 268.1333.
- 12a Wu G, Wong Y, Chen X, Ding Z. J. Org. Chem. 1999; 64: 3714
- 12b Sasikala CH. V. A, Padi PR, Sunkara V, Ramayya P, Dubey PK, Uppala VB. R, Praveen C. Org. Process Res. Dev. 2009; 13: 907
For some recent developments on catalytic transformation of MBH adducts, see: