Subscribe to RSS
DOI: 10.1055/s-0037-1611761
Diphenyl Diselenide Catalyzed Oxidative Degradation of Benzoin to Benzoic Acid
This work was financially supported by National Key Research and Development Program of China (2018YFD0200100), the Open Project Program of Jiangsu Key Laboratory of Zoonosis (R1609), Opening Foundation of the Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University (2016GDGP0104) and Priority Academic Program Development of Jiangsu Higher Education Institutions.Publication History
Received: 07 January 2019
Accepted after revision: 27 February 2019
Publication Date:
02 April 2019 (online)
Published as part of the Cluster Organosulfur and Organoselenium Compounds in Catalysis
Abstract
The diphenyl diselenide catalyzed oxidative degradation of benzoin to benzoic acid is reported. As this reaction can convert the malodorous compound into an odorless and innocuous product under mild conditions, it might be useful for pollutant disposal. The reaction does not require a transition-metal catalyst or a chemical oxidant, so that it can be performed at low cost and without generation of wastes. This is believed to be the first example of the use of organoselenium catalysis technology in pollutant destruction, thereby expanding its range of applications.
Key words
diphenyl diselenide - organoselenium catalysis - green chemistry - benzoin - pollutant destruction - benzoinSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611761.
- Supporting Information
-
References and Notes
- 1a Niu Z.-Q, Cui F, Kuttner E, Xie C.-L, Chen H, Sun Y.-C, Dehestani A, Schierle-Arndt K, Yang P.-D. Nano Lett. 2018; 18: 5329
- 1b Haghshenas P, Langdon SM, Gravel M. Synlett 2017; 28: 542
- 1c Burger P, Casale A, Kerdudo A, Michel T, Laville R, Chagnaud F, Fernandez X. Food Chem. 2016; 210: 613
- 2a Urgoitia G, SanMartin R, Herrero MT, Domínguez E. Chem. Commun. 2015; 51: 4799
- 2b Fukuda N, Kajiwara T, Katou T, Majima K, Ikemoto T. Synlett 2013; 24: 1438
- 2c Jain SL, Sharma VB, Sain B. Synth. Commun. 2003; 33: 3875
- 2d Imanzadeh GH, Zamanloo MR, Mansoori Y, Khodayari A. Chin. J. Chem. 2007; 25: 836
- 3a Casola KK, Gomes MR, Back DF, Zeni G. J. Org. Chem. 2018; 83: 6706
- 3b Jing X.-B, Chen C.-Z, Deng X, Zhang X, Wei D, Yu L. Appl. Organomet. Chem. 2018; 32: e4332
- 3c Liu M, Li Y, Yu L, Xu Q, Jiang X. Sci. China: Chem. 2018; 61: 294
- 3d Kodama S, Saeki T, Mihara K, Higashimae S, Kawaguchi S.-i, Sonoda M, Nomoto A, Ogawa A. J. Org. Chem. 2017; 82: 12477
- 3e Wei D, Hang M.-T, Yu L. Sci. Rep. 2017; 7: 6376
- 3f Tamai T, Yoshikawa M, Higashimae S, Nomoto A, Ogawa A. J. Org. Chem. 2016; 81: 324
- 3g Sancineto L, Mariotti A, Bagnoli L, Marini F, Desantis J, Iraci N, Santi C, Pannecouque C, Tabarrini O. J. Med. Chem. 2015; 58: 9601
- 3h Wang Y, Zhu B, Xu Q, Zhu Q, Yu L. RSC Adv. 2014; 4: 49170
- 3i Yu L, Wu Y, Chen T, Pan Y, Xu Q. Org. Lett. 2013; 15: 144
- 3j Yu L, Ren L, Yi R, Wu Y, Chen T, Guo R. J. Organomet. Chem. 2011; 696: 2228
- 3k Yu L, Ren L, Guo R, Chen T. Synth. Commun. 2011; 41: 1958
- 3l Yu L, Meng J, Xia L, Guo R. J. Org. Chem. 2009; 74: 5087
- 3m Yu L, Meng B, Huang X. Synth. Commun. 2008; 38: 3142
- 3n Yu L, Meng B, Huang X. Synlett 2007; 2919
- 3o Yu L, Huang X. Synlett 2007; 1371
- 3p Yu L, Chen B, Huang X. Tetrahedron Lett. 2007; 48: 925
- 3q Yu L, Huang X. Synlett 2006; 2136
- 4a Freudendahl DM, Santoro S, Shahzad SA, Santi C, Wirth T. Angew. Chem. Int. Ed. 2009; 48: 8409
- 4b Santi C, Santoro S, Battistelli B. Curr. Org. Chem. 2010; 14: 2442
- 4c Santoro S, Azeredo JB, Nascimento V, Sancineto L, Braga AL, Santi C. RSC Adv. 2014; 4: 31521
- 4d Młochowski J, Wójtowicz-Młochowska H. Molecules 2015; 20: 10205
- 4e Breder A, Ortgies S. Tetrahedron Lett. 2015; 56: 2843
- 4f Guo R, Liao L, Zhao X. Molecules 2017; 22: 835
- 4g Zheng Y., Wu A., Ke Y., Cao H., Yu L.; Chin. Chem. Lett.; DOI: 10.1016/j.cclet.2019.01.012.
- 5a Depken C, Krätzschmar F, Rieger R, Rode K, Breder A. Angew. Chem. Int. Ed. 2018; 57: 2459
- 5b Rode K, Palomba M, Ortgies S, Rieger R, Breder A. Synthesis 2018; 50: 3875
- 5c Guo R, Huang J, Zhao X. ACS Catal. 2018; 8: 926
- 5d Ortgies S, Rieger R, Rode K, Koszinowski K, Kind J, Thiele CM, Rehbein J, Breder A. ACS Catal. 2017; 7: 7578
- 5e Liao L, Guo R, Zhao X. Angew. Chem. Int. Ed. 2017; 56: 3201
- 5f Ortgies S, Depken C, Breder A. Org. Lett. 2016; 18: 2856
- 5g Guo R, Huang J, Huang H, Zhao X. Org. Lett. 2016; 18: 504
- 5h Cresswell AJ, Eey ST.-C, Denmark SE. Nat. Chem. 2015; 7: 146
- 5i Ortgies S, Breder A. Org. Lett. 2015; 17: 2748
- 5j Deng Z, Wei J, Liao L, Huang H, Zhao X. Org. Lett. 2015; 17: 1834
- 5k Trenner J, Depken C, Weber T, Breder A. Angew. Chem. Int. Ed. 2013; 52: 8952
- 6a Luo J, Cao Q, Cao X, Zhao X. Nat. Commun. 2018; 9: 527
- 6b Liu X, Liang Y, Ji J, Luo J, Zhao X. J. Am. Chem. Soc. 2018; 140: 4782
- 6c Chen F, Tan CK, Yeung Y.-Y. J. Am. Chem. Soc. 2013; 135: 1232
- 7a Jing X, Yuan D, Yu L. Adv. Synth. Catal. 2017; 359: 1194
- 7b Jing X, Wang T, Ding Y, Yu L. Appl. Catal., A 2017; 541: 107
- 7c Wang F, Xu L, Sun C, Xu Q, Huang J, Yu L. Chin. J. Org. Chem. 2017; 37: 2115
- 7d Yu L, Chen F, Ding Y. ChemCatChem 2016; 8: 1033
- 7e Sancineto L, Tidei C, Bagnoli L, Marini F, Lenardão EJ, Santi C. Molecules 2015; 20: 10496
- 7f Yu L, Wang J, Chen T, Wang Y, Xu Q. Appl. Organomet. Chem. 2014; 28: 652
- 7g Yu L, Wang J, Chen T, Ding K, Pan Y. Youji Huaxue 2013; 33: 1096
- 7h Santi C, Di Lorenzo R, Tidei C, Bagnoli L, Wirth T. Tetrahedron 2012; 68: 10530
- 7i Santoro S, Santi C, Sabatini M, Testaferri L, Tiecco M. Adv. Synth. Catal. 2008; 350: 2881
- 7j ten Brink G.-J, Fernandes BC. M, van Vliet MC. A, Arends IW. C. E, Sheldon RA. J. Chem. Soc., Perkin Trans. 1 2001; 224
- 7k ten Brink G.-J, Vis J.-M, Arends IW. C. E, Sheldon RA. J. Org. Chem. 2001; 66: 2429
- 7l Syper L. Tetrahedron 1987; 43: 2853
- 8a Yang Y, Fan X, Cao H, Chu S, Zhang X, Xu Q, Yu L. Catal. Sci. Technol. 2018; 8: 5017
- 8b Wang Y, Yu L, Zhu B, Yu L. J. Mater. Chem. A 2016; 4: 10828
- 9 Cao H, Zhu B, Yang Y, Xu L, Yu L, Xu Q. Chin. J. Catal. 2018; 39: 899
- 10a Chen C, Zhang X, Cao H, Wang F, Yu L, Xu Q. Adv. Synth. Catal. 2019; 361: 603
- 10b Cao H, Liu M, Qian R, Zhang X, Yu L. Appl. Organomet. Chem. 2019; 33: e4599
- 10c Yu L, Bai Z, Zhang X, Zhang X, Ding Y, Xu Q. Catal. Sci. Technol. 2016; 6: 1804
- 10d Yu L, Ye J, Zhang X, Ding Y, Xu Q. Catal. Sci. Technol. 2015; 5: 4830
- 10e Zhang X, Sun J, Ding Y, Yu L. Org. Lett. 2015; 17: 5840
- 10f Zhang X, Ye J, Yu L, Shi X, Zhang M, Xu Q, Lautens M. Adv. Synth. Catal. 2015; 357: 955
- 10g Yu L, Wu Y, Cao H, Zhang X, Shi X, Luan J, Chen T, Pan Y, Xu Q. Green Chem. 2014; 16: 287
- 10h Yu L, Li H, Zhang X, Ye J, Liu J, Xu Q, Lautens M. Org. Lett. 2014; 16: 1346
- 11 Oxidation of Benzoin (1a) to Benzoic Acid (2a); Typical Procedure A reaction tube was charged with benzoin (1a; 212.2 mg, 1 mmol), (PhSe)2 (15.6 mg, 0.05 mmol), and a magnetic stirrer bar. A 30% aq solution of H2O2 (453.5 mg, 4 mmol) in MeCN (2 mL) was then injected into the tube from a syringe, and the mixture was stirred at r.t. for 24 h. The solvent was then evaporated under vacuum, and the residue was purified by preparative TLC (PE–EtOAc, 10:1) to give benzoic acid (2a) as a white solid; yield: 200.2 mg (82%); mp 122.0–122.4 °C (Lit.12a 122.13 °C). IR (KBr): 1915, 1680, 1485, 1455, 1398, 1324, 1291, 1181, 933, 805 cm–1. 1H NMR (400 MHz, CDCl3, TMS): δ = 8.13 (d, J = 8.9 Hz, 2 H), 7.62 (t, J = 7.4 Hz, 1 H), 7.49 (t, J = 7.8 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 171.6, 133.7, 130.2, 129.2, 128.5.
For selected articles, see:
For selected reviews, please see:
For selected articles, see:
For selected articles on organoselenium-catalyzed green reactions, see:
For our works on Se catalysis, see: