Synthesis 2019; 51(18): 3529-3535
DOI: 10.1055/s-0037-1611838
paper
© Georg Thieme Verlag Stuttgart · New York

Concise Seven-Membered Oxepene/Oxepane Synthesis – Structural Motifs in Natural and Synthetic Products

Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA   Email: cakoto@hotmail.com
,
Jon D. Rainier
› Author Affiliations
We are grateful to the National Institutes of Health, General Medical Sciences (GM56677) for support of this work. C.O.A. acknowledges Pfizer for a graduate fellowship.
Further Information

Publication History

Received: 21 March 2019

Accepted after revision: 30 April 2019

Publication Date:
20 May 2019 (online)


Abstract

This work outlines a suitable method for the synthesis of oxepane skeleton using iterative C-glycoside technology on the oxepene intermediate, which was synthesized utilizing Wilkinson’s catalyst [Rh(PPh3)3Cl] to generate the isomerized product in a linear synthetic manner. The central core of the oxepene motif was achieved via an olefin metathesis reaction using the Grubbs second-generation and Schrock catalysts. The synthesis of the functionalized oxepane having the desired adriatoxin E-ring relative stereochemistry was achieved starting from commercially available homopropargylic alcohol.

Supporting Information

 
  • References

  • 1 Present Address: Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
  • 2 Belen’kll LI. In Comprehensive Heterocyclic Chemistry II, Vol. 9. Katritzky AR, Rees CW, Scriven EF. Elsevier; Amsterdam: 1996: 45-66
  • 3 Kanojia RM, Chin E, Smith C, Chen R, Rowand E, Levine SD, Wachter MP, Adams RE, Hahn D. J. Med. Chem. 1985; 28: 796
  • 4 Nicolaou KC, Claremon DA, Barnette WE. J. Am. Chem. Soc. 1980; 102: 6611
  • 5 Kane VV. US Patent 4384126, 1983
  • 6 Shinya Y, Ichio S. Patent WO2005079785 A1, 2005
  • 7 Cloos PA. C. Patent WO2004039773 A2, 2004
  • 8 Fukuzawa A, Masamune T. Tetrahedron Lett. 1981; 22: 4081
  • 9 Dembitsky VM, Tolstikov AG, Tolstikov GA. Chem. Sustainable Develop. 2003; 11: 329
  • 10 Guella G, Pietra F. Helv. Chim. Acta 1991; 74: 47
    • 11a Scheuer PJ, Takahashi W, Tsutsumi J, Yoshida T. Science 1967; 155: 1267
    • 11b Murata M, Legrand AM, Yasumoto T. Tetrahedron Lett. 1989; 30: 3793
  • 12 Poli MA, Musser SM, Dickey RW, Eilers PP, Hall S. Toxicon 2000; 38: 981
  • 13 Bourdelais AJ, Jacocks HM, Wright JL. C, Bigwarfe PM. Jr, Baden DG. J. Nat. Prod. 2005; 68: 2
    • 14a Osei Akoto C, Rainier JD. Angew. Chem. Int. Ed. 2008; 47: 8055
    • 14b Konishi M, Yang X, Li B, Fairchild CR, Shimizu R. J. Nat. Prod. 2004; 67: 1309
    • 14c Osei Akoto C. Ph.D. Dissertation . University of Utah; USA: 2009
  • 15 Zhao Y, Slepkov AD, Osei Akoto C, McDonald R, Hegmann FA, Tykwinski RR. Chem. Eur. J. 2005; 11: 321
  • 16 Meta CT, Koide K. Org. Lett. 2004; 6: 1785
  • 17 Gao Y, Hanson RM, Klunder JM, Ko SY, Masamune H, Sharpless KB. J. Am. Chem. Soc. 1987; 109: 5765
  • 18 Caron M, Sharpless KB. J. Org. Chem. 1985; 50: 1557

    • For reviews on RCM, see:
    • 20a Fürstner A. Angew. Chem. Int. Ed. 2000; 39: 3012
    • 20b Grubbs RH, Chang S. Tetrahedron 1998; 54: 4413
  • 21 Schrock RR, Murdzek JS, Bazan GC, Robbins J, DiMare M, O’Regan MB. J. Am. Chem. Soc. 1990; 112: 3875
  • 22 Corey EJ, Suggs JW. J. Org. Chem 1973; 38: 3224
  • 23 Perrin DD, Armarego WL. F. Purification of Common Laboratory Chemicals . Pergamon Press; Oxford: 1966