Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(12): 1431-1436
DOI: 10.1055/s-0037-1611857
DOI: 10.1055/s-0037-1611857
letter
1,4-Diazabicyclo[2.2.2]octane-Catalyzed Multicomponent Domino Strategy for the Synthesis of Tetrasubstituted NH-Pyrroles
We are grateful for the National Natural Science Foundation of China (No. 21676253 and No. 21776254) for financial support.Further Information
Publication History
Received: 25 April 2019
Accepted after revision: 20 May 2019
Publication Date:
07 June 2019 (online)
Abstract
A mild and efficient 1,4-diazabicyclo[2.2.2]octane (DABCO)-catalyzed three-component domino reaction was developed for the synthesis of highly functionalized NH-pyrroles from arylglyoxal monohydrates, enamino esters, and cyclic 1,3-dicarbonyl compounds in 1,4-dioxane at room temperature for 0.5 hours. Various substituted NH-pyrroles were obtained in moderate to good yields.
Key words
multicomponent reaction - pyrroles - DABCO - cyclization - arylglyoxal monohydrates - enamino estersSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611857.
- Supporting Information
-
References and Notes
- 1a De Souza JE. G, Dos Santos FL, Barros-Neto B, Dos Santos CG. De Melo C. P. Synth. Met. 2001; 119: 383
- 1b Walsh CT, Garneau-Tsodikova S, Howard-Jones AR. Nat. Prod. Rep. 2006; 23: 517
- 1c Ramanavičius A, Ramanavičienė A, Malinauskas A. Electrochim. Acta 2006; 51: 6025
- 1d Fan H, Peng J, Hamann MT, Hu J.-F. Chem. Rev. 2008; 108: 264
- 1e Young IS, Thornton PD, Thompson A. Nat. Prod. Rep. 2010; 27: 1801
- 2 Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P. RSC Adv. 2015; 5: 15233
- 3a Alberola A, González Ortega A, Sádaba ML, Sañudo C. Tetrahedron 1999; 55: 6555
- 3b Elghamry I. Synth. Commun. 2009; 39: 3010
- 3c Manley J, Kalman M, Conway B, Ball C, Havens J, Vaidyanathan R. J. Org. Chem. 2003; 68: 6447
- 3d Bellingham R, Carey J, Hussain N, Morgan D, Oxley P, Powling L. Org. Process Res. Dev. 2004; 8: 279
- 4a Minetto G, Raveglia L, Sega A, Taddei M. Eur. J. Org. Chem. 2005; 2005: 5277
- 4b Banik B, Samajdar S, Banik I. J. Org. Chem. 2004; 69: 213
- 4c Zhang L, Zhang J, Ma J, Cheng D.-J, Tan B. J. Am. Chem. Soc. 2017; 139: 1714
- 4d Handy S, Lavender K. Tetrahedron Lett. 2013; 54: 4377
- 4e Cranwell PB, O’Brien M, Browne DL, Koos P, Polyzos A, Peña-López M, Ley SV. Org. Biomol. Chem. 2012; 10: 5774
- 4f Chen J, Wu H, Zheng Z, Jin C, Zhang X, Su W. Tetrahedron Lett. 2006; 47: 5383
- 5a Matiychuk V, Martyak R, Obushak N, Ostapiuk Y, Pidlypnyi N. Chem. Heterocycl. Compd. (Engl. Transl.) 2004; 40: 1218
- 5b Trautwein A, Süßmuth R, Jung G. Bioorg. Med. Chem. Lett. 1998; 8: 2381
- 5c Estévez V, Villacampa M, Menéndez JC. Chem. Commun. 2013; 49: 591
- 5d Moss TA, Nowak T. Tetrahedron Lett. 2012; 53: 3056
- 5e Herath A, Cosford ND. P. Org. Lett. 2010; 12: 5182
- 6 Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2014; 43: 4633
- 7a Touré BB, Hall DG. Chem. Rev. 2009; 109: 4439
- 7b Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
- 8a Chang X, Zhang X, Chen Z. Org. Biomol. Chem. 2018; 16: 4279
- 8b Wang J, Zhou R, Zhuang S, Wu A. Tetrahedron 2019; 75: 1590
- 8c Eftekhari-Sis B, Zirak M, Akbari A. Chem. Rev. 2013; 113: 2958
- 8d Karamthulla S, Khan MN, Choudhury LH. RSC Adv. 2015; 5: 19724
- 8e Dhinakaran I, Padmini V, Bhuvanesh N. ACS Comb. Sci. 2016; 18: 236
- 8f Bunescu A, Wang Q, Zhu J. Org. Lett. 2014; 16: 1756
- 8g Ma G.-H, Jiang B, Tu X.-J, Ning Y, Tu S.-J, Li G. Org. Lett. 2014; 16: 4504
- 9a Lin W, Zheng Y.-X, Xun Z, Huang Z.-B, Shi D.-Q. ACS Comb. Sci. 2017; 19: 708
- 9b Wang H, Liu X, Feng X, Huang Z, Shi D. Green Chem. 2013; 15: 3307
- 9c Karamthulla S, Pal S, Khan MN, Choudhury LH. Synlett 2014; 25: 1926
- 9d Masoudi M, Anary-Abbasinejad M. Tetrahedron Lett. 2016; 57: 103
- 10 Yang X, Chen Z, Zhong W. Eur. J. Org. Chem. 2017; 2017: 2258
- 11a Chen Z, Bi J, Su W. Chin. J. Chem. 2012; 30: 1845
- 11b Naidu PS, Kolita S, Sharma M, Bhuyan PJ. J. Org. Chem. 2015; 80: 6381
- 11c Yang X, Zheng L, Chen Z, Zhong W. Synth. Commun. 2018; 48: 929
- 11d Jalani HB, Mali JR, Park H, Lee JK, Lee K, Lee K, Choi Y. Adv. Synth. Catal. 2018; 360: 4073
- 12 Ethyl 4-(4-Hydroxy-2-oxo-2H-chromen-3-yl)-2,5-diphenyl-1H-pyrrole-3-carboxylate (4a); Typical ProcedureA mixture of the 4-hydroxycoumarin (1a; 1 mmol), phenylglyoxal monohydrate (2a; 1 mmol), β-enamino ester 3a (1 mmol), and DABCO (10 mol%) in 1,4-dioxane (5 mL) was stirred at the reflux for 0.5 h. Upon completion of the reaction, the mixture was cooled to r.t. and aq NH4Cl (30 mL) was added. The aqueous phase was extracted with EtOAc (3 × 25 mL). The combined organic extracts were dried (Na2SO4), filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, DCM-MeOH (160:1 v/v)) to give a pale white powder; yield: 338 mg (75%); mp = 209–211 °C.1H NMR (600 MHz, DMSO-d6): δ = 11.88 (s, 1H), 10.94 (s, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.64 –7.62 (m, 3H), 7.48–7.45 (m, 4H), 7.43–7.38 (m, 2H), 7.35 (t, J = 7.2 Hz, 1H), 7.31 (t, J = 7.2 Hz, 2H), 7.20 (t, J = 7.2 Hz, 1H), 3.93–3.83 (m, 2H), 0.81 (t, J = 7.2 Hz, 3H). 13C NMR (150 MHz, DMSO-d 6): δ = 164.5, 162.6, 161.2, 152.9, 138.0, 132.6, 132.5, 132.4, 132.2, 130.0, 128.8, 128.2, 128.1, 127.4, 127.1, 124.3, 124.0, 116.7, 116.5, 113.4, 112.4, 101.8, 59.1, 14.0. MS (ESI): m/z = 450 [M – H]–. HRMS-ESI: m/z [M – H]– calcd for C28H20NO5: 450.1347; found: 450.1350.