RSS-Feed abonnieren
DOI: 10.1055/s-0037-1611890
Recent Progress in Equilibrium Acidity Studies of Organocatalysts
Autor*innen
This work was supported by the Natural Science Foundation of China (21772098, 21390400, 21602116), and Tsinghua University Initiative Scientific Research Program (20131080083, 20141081295).
Publikationsverlauf
Received: 23. Mai 2019
Accepted after revision: 26. Juni 2019
Publikationsdatum:
10. Juli 2019 (online)

Dedicated to the 100th anniversary of Nankai University
Abstract
This account summarizes our recent work on the pK a scales of some frequently used organocatalysts, especially those of hydrogen-bond-donor catalysts and stronger Brønsted acid catalysts. Most of these pK a values were obtained by the Bordwell overlapping indicator method, which is known to provide high accuracy. Linear free-energy relationships associated with pK a values are discussed in relation to understanding of reaction mechanisms.
1 Introduction
2 Single Hydrogen-Bonding Donors
2.1 Proline-Type Organocatalysts
2.2 Cinchona Alkaloids Bearing a Hydrogen-Bonding Donor in the 6′-Position
3 Double-Hydrogen-Bonding Donors
3.1 Thioureas
3.2 Squaramides
3.3 BINOLs
4 Stronger Brønsted Acids
5 N-Heterocyclic Carbenes
6 Summary and Outlook
-
References
- 1a Schreiner PR. Chem. Soc. Rev. 2003; 32: 289
- 1b Akiyama T. Chem. Rev. 2007; 107: 5744
- 1c Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
- 1d Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
- 1e Erkkilä A, Majander I, Pihko PM. Chem. Rev. 2007; 107: 5416
- 1f Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
- 1g Wurz RP. Chem. Rev. 2007; 107: 5570
- 1h Zhang Z, Schreiner PR. Chem. Soc. Rev. 2009; 38: 1187
- 1i Akiyama T, Mori K. Chem. Rev. 2015; 115: 9277
- 1j Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
- 1k James T, van Gemmeren M, List B. Chem. Rev. 2015; 115: 9388
- 2 Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165
- 3a Taft RW. J. Am. Chem. Soc. 1952; 74: 2729
- 3b Taft RW. J. Am. Chem. Soc. 1952; 74: 3120
- 3c Taft RW. J. Am. Chem. Soc. 1953; 75: 4538
- 4 Charton M. J. Am. Chem. Soc. 1975; 97: 1552
- 5 Jensen KH, Sigman MS. Angew. Chem. Int. Ed. 2007; 46: 4748
- 6a Harper KC, Sigman MS. Science 2011; 333: 1875
- 6b Harper KC, Bess EN, Sigman MS. Nat. Chem. 2012; 4: 366
- 7a Jacobsen EN, Zhang W, Guler ML. J. Am. Chem. Soc. 1991; 113: 6703
- 7b Santiago CB, Guo J.-Y, Sigman MS. Chem. Sci. 2018; 9: 2398
- 8 Yang C, Zhang E.-G, Li X, Cheng J.-P. Angew. Chem. Int. Ed. 2016; 55: 6506
- 9a Gilli P, Pretto L, Gilli G. J. Mol. Struct. 2007; 844–845: 328
- 9b Gilli G, Gilli P. The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory. Oxford University Press; Oxford: 2009
- 9c Gilli P, Pretto L, Bertolasi V, Gilli G. Acc. Chem. Res. 2009; 42: 33
- 10 Matthews WS, Bares JE, Bartmess JE, Bordwell FG, Cornforth FJ, Drucker GE, Margolin Z, McCallum RJ, McCollum GJ, Vanier NR. J. Am. Chem. Soc. 1975; 97: 7006
- 11a Jakab G, Tancon C, Zhang Z, Lippert KM, Schreiner PR. Org. Lett. 2012; 14: 1724
- 11b Dunn MH, Konstandaras N, Cole ML, Harper JB. J. Org. Chem. 2017; 82: 7324
- 11c Rombola M, Sumaria CS, Montgomery TD, Rawal VH. J. Am. Chem. Soc. 2017; 139: 5297
- 12a Ho J, Coote ML. Theor. Chem. Acc. 2009; 125: 3
- 12b Ho J, Coote ML. J. Chem. Theory Comput. 2009; 5: 295
- 12c Ho J, Coote ML, Franco-Pérez M, Gómez-Balderas R. J. Phys. Chem. A 2010; 114: 11992
- 12d Zhang S, Baker J, Pulay P. J. Phys. Chem. A 2010; 114: 432
- 12e Ho J, Coote ML. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011; 1: 649
- 12f Marenich AV, Ding W, Cramer CJ, Truhlar DG. J. Phys. Chem. Lett. 2012; 3: 1437
- 12g Sharma I, Kaminski GA. J. Comput. Chem. 2012; 33: 2388
- 12h Zhang S. J. Comput. Chem. 2012; 33: 517
- 13 List B, Lerner RA, Barbas CF. J. Am. Chem. Soc. 2000; 122: 2395
- 14a List B, Hoang L, Bahmanyar S, Houk KN, List B. J. Am. Chem. Soc. 2002; 125: 16
- 14b Houk KN, Allemann C, Gordillo R, Clemente FR, Cheong PH.-Y, Houk KN. Acc. Chem. Res. 2004; 37: 558
- 14c Saito S, Yamamoto H. Acc. Chem. Res. 2004; 37: 570
- 14d Nielsen M, Worgull D, Zweifel T, Gschwend B, Bertelsen S, Jørgensen KA. Chem. Commun. 2011; 47: 632
- 15 Torii H, Nakadai M, Ishihara K, Saito S, Yamamoto H, Yamamoto H. Angew. Chem. Int. Ed. 2004; 43: 1983
- 16 Gong L.-Z, Tang Z, Yang Z.-H, Chen X.-H, Cun L.-F, Mi A.-Q, Jiang Y.-Z, Gong L.-Z. J. Am. Chem. Soc. 2005; 127: 9285
- 17 Li Z, Li X, Ni X, Cheng J.-P. Org. Lett. 2015; 17: 1196
- 18a Zhou Y, Shan Z. J. Org. Chem. 2006; 71: 9510
- 18b Reis Ö, Eymur S, Reis B, Demir AS. Chem. Commun. 2009; 1088
- 18c El-Hamdouni N, Companyó X, Rios R, Moyano A. Chem. Eur. J. 2010; 16: 1142
- 18d Martínez-Castañeda Á, Poladura B, Rodríguez-Solla H, Concellón C, del Amo V. Org. Lett. 2011; 13: 3032
- 18e Martínez-Castañeda Á, Rodríguez-Solla H, Concellón C, del Amo V. J. Org. Chem. 2012; 77: 10375
- 18f Martínez-Castañeda Á, Poladura B, Rodríguez-Solla H, Concellón C, del Amo V. Chem. Eur. J. 2012; 18: 5188
- 19 Xue X.-S, Yang C, Li X, Cheng J.-P. J. Org. Chem. 2014; 79: 1166
- 20 Iwabuchi Y, Nakatani M, Yokoyama N, Hatakeyama S. J. Am. Chem. Soc. 1999; 121: 10219
- 21a Marcelli T, van Maarseveen JH, Hiemstra H. Angew. Chem. Int. Ed. 2006; 45: 7496
- 21b Chauhan P, Chimni SS. RSC Adv. 2012; 2: 737
- 22a Li H, Wang Y, Tang L, Wu F, Liu X, Guo C, Foxman BM, Deng L. Angew. Chem. Int. Ed. 2005; 44: 105
- 22b Brandes S, Bella M, Kjærsgaard A, Jørgensen KA. Angew. Chem. Int. Ed. 2006; 45: 1147
- 22c Li H, Wang B, Deng L. J. Am. Chem. Soc. 2006; 128: 732
- 22d Wang Y, Li H, Wang Y.-Q, Liu Y, Foxman BM, Deng L. J. Am. Chem. Soc. 2007; 129: 6364
- 22e Li L, Ganesh M, Seidel D. J. Am. Chem. Soc. 2009; 131: 11648
- 22f Liu Y.-L, Wang B.-L, Cao J.-J, Chen L, Zhang Y.-X, Wang C, Zhou J. J. Am. Chem. Soc. 2010; 132: 15176
- 22g Denis J.-B, Masson G, Retailleau P, Zhu J. Angew. Chem. Int. Ed. 2011; 50: 5356
- 22h Wu Y, Singh RP, Deng L. J. Am. Chem. Soc. 2011; 133: 12458
- 22i Xiao X, Xie Y, Su C, Liu M, Shi Y. J. Am. Chem. Soc. 2011; 133: 12914
- 22j Buyck T, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2013; 52: 12714
- 22k Xue X.-S, Li X, Yu A, Yang C, Song C, Cheng J.-P. J. Am. Chem. Soc. 2013; 135: 7462
- 22l Corbett MT, Johnson JS. Angew. Chem. Int. Ed. 2014; 53: 255
- 22m Zheng P.-F, Ouyang Q, Niu S.-L, Shuai L, Yuan Y, Jiang K, Liu T.-Y, Chen Y.-C. J. Am. Chem. Soc. 2015; 137: 9390
- 23 Ni X, Li X, Cheng J.-P. Org. Chem. Front. 2016; 3: 170
- 24a Sigman MS, Jacobsen EN. J. Am. Chem. Soc. 1998; 120: 4901
- 24b Raheem IT, Thiara PS, Peterson EA, Jacobsen EN. J. Am. Chem. Soc. 2007; 129: 13404
- 24c Fang Y.-Q, Jacobsen EN. J. Am. Chem. Soc. 2008; 130: 5660
- 24d Reisman SE, Doyle AG, Jacobsen EN. J. Am. Chem. Soc. 2008; 130: 7198
- 25a Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
- 25b Hoashi Y, Yabuta T, Takemoto Y. Tetrahedron Lett. 2004; 45: 9185
- 25c Okino T, Nakamura S, Furukawa T, Takemoto Y. Org. Lett. 2004; 6: 625
- 25d Okino T, Hoashi Y, Furukawa T, Xu X, Takemoto Y. J. Am. Chem. Soc. 2005; 127: 119
- 25e Hoashi Y, Yabuta T, Yuan P, Miyabe H, Takemoto Y. Tetrahedron 2006; 62: 365
- 25f Inokuma T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2006; 128: 9413
- 26a McCooey SH, Connon SJ. Angew. Chem. Int. Ed. 2005; 44: 6367
- 26b Song J, Wang Y, Deng L. J. Am. Chem. Soc. 2006; 128: 6048
- 26c Wang J, Li H, Zu L, Jiang W, Xie H, Duan W, Wang W. J. Am. Chem. Soc. 2006; 128: 12652
- 26d Wang Y.-Q, Song J, Hong R, Li H, Deng L. J. Am. Chem. Soc. 2006; 128: 8156
- 26e Wang J, Xie H, Li H, Zu L, Wang W. Angew. Chem. Int. Ed. 2008; 47: 4177
- 27a Huang H, Jacobsen EN. J. Am. Chem. Soc. 2006; 128: 7170
- 27b Lalonde MP, Chen Y, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 6366
- 27c Liu K, Cui H.-F, Nie J, Dong K.-Y, Li X.-J, Ma J.-A. Org. Lett. 2007; 9: 923
- 27d Tsogoeva SB, Wei S, Freund M, Mauksch M. Angew. Chem. Int. Ed. 2009; 48: 590
- 28a Hamza A, Schubert G, Soós T, Pápai I. J. Am. Chem. Soc. 2006; 128: 13151
- 28b Zuend SJ, Jacobsen EN. J. Am. Chem. Soc. 2007; 129: 15872
- 28c Yalalov DA, Tsogoeva SB, Shubina TE, Martynova IM, Clark T. Angew. Chem. Int. Ed. 2008; 47: 6624
- 29 Li X, Deng H, Zhang B, Li J, Zhang L, Luo S, Cheng J.-P. Chem. Eur. J. 2010; 16: 450
- 30 Li X, Zhang B, Xi Z.-G, Luo S, Cheng J.-P. Adv. Synth. Catal. 2010; 352: 416
- 31a Li X, Luo S, Cheng J.-P. Chem. Eur. J. 2010; 16: 14290
- 31b Li X, Xi Z, Luo S, Cheng J.-P. Adv. Synth. Catal. 2010; 352: 1097
- 31c Li S, Zhang E, Feng J, Li X. Org. Chem. Front. 2017; 4: 2301
- 32 Malerich JP, Hagihara K, Rawal VH. J. Am. Chem. Soc. 2008; 130: 14416
- 33a Qian Y, Ma G, Lv A, Zhu H.-L, Zhao J, Rawal VH. Chem. Commun. 2010; 46: 3004
- 33b Storer RI, Aciro C, Jones LH. Chem. Soc. Rev. 2011; 40: 2330
- 33c Song H.-L, Yuan K, Wu X.-Y. Chem. Commun. 2011; 47: 1012
- 33d Albrecht Ł, Dickmeiss G, Cruz Acosta F, Rodríguez-Escrich C, Davis RL, Jørgensen KA. J. Am. Chem. Soc. 2012; 134: 2543
- 33e Jiang H, Rodríguez-Escrich C, Johansen TK, Davis RL, Jørgensen KA. Angew. Chem. Int. Ed. 2012; 51: 10271
- 33f Su Y, Ling J.-B, Zhang S, Xu P.-F. J. Org. Chem. 2013; 78: 11053
- 33g Wu L, Wang Y, Song H, Tang L, Zhou Z, Tang C. Adv. Synth. Catal. 2013; 355: 1053
- 33h Yang KS, Nibbs AE, Türkmen YE, Rawal VH. J. Am. Chem. Soc. 2013; 135: 16050
- 33i Sun W, Hong L, Zhu G, Wang Z, Wei X, Ni J, Wang R. Org. Lett. 2014; 16: 544
- 34 Ni X, Li X, Wang Z, Cheng J.-P. Org. Lett. 2014; 16: 1786
- 35a Pu L. Chem. Rev. 1998; 98: 2405
- 35b Chen Y, Yekta S, Yudin AK. Chem. Rev. 2003; 103: 3155
- 35c Pu L. Acc. Chem. Res. 2012; 45: 150
- 35d Pu L. Acc. Chem. Res. 2014; 47: 1523
- 36a McDougal NT, Schaus SE. J. Am. Chem. Soc. 2003; 125: 12094
- 36b Wu TR, Chong JM. J. Am. Chem. Soc. 2005; 127: 3244
- 36c Yu SH, Ferguson MJ, McDonald R, Hall DG. J. Am. Chem. Soc. 2005; 127: 12808
- 36d Lou S, Moquist PN, Schaus SE. J. Am. Chem. Soc. 2006; 128: 12660
- 36e Pellegrinet SC, Goodman JM. J. Am. Chem. Soc. 2006; 128: 3116
- 36f Wu TR, Chong JM. J. Am. Chem. Soc. 2007; 129: 4908
- 36g Barnett DS, Moquist PN, Schaus SE. Angew. Chem. Int. Ed. 2009; 48: 8679
- 36h Le PQ, Nguyen TS, May JA. Org. Lett. 2012; 14: 6104
- 37 Ni X, Li X, Li Z, Cheng J.-P. Org. Chem. Front. 2016; 3: 1154
- 38a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
- 38b Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356
- 38c Nakashima D, Yamamoto H. J. Am. Chem. Soc. 2006; 128: 9626
- 38d Cheon CH, Yamamoto H. J. Am. Chem. Soc. 2008; 130: 9246
- 39a Yang C, Xue X.-S, Jin J.-L, Li X, Cheng J.-P. J. Org. Chem. 2013; 78: 7076
- 39b Yang C, Xue X.-S, Li X, Cheng J.-P. J. Org. Chem. 2014; 79: 4340
- 39c Yang C, Xue X.-S, Jin J.-L, Li X, Cheng J.-P. J. Org. Chem. 2017; 82: 10756
- 40a Grossmann A, Enders D. Angew. Chem. Int. Ed. 2012; 51: 314
- 40b Bode JW. Nat. Chem 2013; 5: 813
- 40c De Sarkar S, Biswas A, Samanta RC, Studer A. Chem. Eur. J. 2013; 19: 4664
- 40d Lupton DW, Ryan SJ, Candish L. Chem. Soc. Rev. 2013; 42: 4906
- 40e Chen X.-Y, Ye S. Synlett 2013; 24: 1614
- 40f Chauhan P, Enders D. Angew. Chem. Int. Ed. 2014; 53: 1485
- 40g Hopkinson MN, Richter C, Schedler M, Glorius F. Nature 2014; 510: 485
- 40h Mahatthananchai J, Bode JW. Acc. Chem. Res. 2014; 47: 696
- 40i Menon RS, Biju AT, Nair V. Chem. Soc. Rev. 2015; 44: 5040
- 40j Menon RS, Biju AT, Nair V. Beilstein J. Org. Chem. 2016; 12: 444
- 40k Wang MH, Scheidt KA. Angew. Chem. Int. Ed. 2016; 55: 14912
- 41a Enders D, Breuer K, Raabe G, Runsink J, Teles JH, Melder J.-P, Ebel K, Brode S. Angew. Chem. Int. Ed. 1995; 34: 1021
- 41b Knight RL, Leeper FJ. J. Chem. Soc., Perkin Trans. 1 1998; 1891
- 42a Rovis T. Chem. Lett. 2008; 37: 2
- 42b Kaeobamrung J, Kozlowski MC, Bode JW. Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 20661
- 42c Mahatthananchai J, Bode JW. Chem. Sci. 2012; 3: 192
- 43 Bordwell FG, Satish AV. J. Am. Chem. Soc. 1991; 113: 985
- 44 Chu Y, Deng H, Cheng J.-P. J. Org. Chem. 2007; 72: 7790
- 45 Li Z, Li X, Cheng J.-P. J. Org. Chem. 2017; 82: 9675
- 46 Internet Bond-Energy Databank (pK a and BDE)–iBonD Home Page. http://ibond.chem.tsinghua.edu.cn or http://ibond.nankai.edu.cn (accessed July 3, 2019). For a detailed introduction to iBonD, see: Mayr H.; ChemistryViews; DOI: 10.1002/chemv.201600113