Nervenheilkunde 2016; 35(07/08): 492-500
DOI: 10.1055/s-0037-1616414
Übersichtsartikel
Schattauer GmbH

Neue Therapieoptionen bei Migräne

CGRP-blockierende Substanzen im BlickpunktNew treatment options for migraineCGRP blocking substances
K. Meßlinger
1   Institut für Physiologie und Pathophysiologie, Friedrich-Alexander Universität Erlangen-Nürnberg
,
M. Dux
2   Department of Physiology, University of Szeged, Hungary
› Author Affiliations
Further Information

Publication History

eingegangen am: 10 April 2016

angenommen am: 21 April 2016

Publication Date:
31 January 2018 (online)

Zusammenfassung

Calcitonin gene-related peptide (CGRP), ein von primären Afferenzen freigesetztes vasoaktives Neuropeptid, steht im Fokus der pharmakologischen Migränetherapie. CGRP hat Wirkungen auf viele zentrale und periphere Funktionen, aber der migränefördernde Wirkungsmechanismus ist unklar. Derzeitige klinische und experimentelle Therapieprinzipien beruhen auf der Hemmung der CGRP-Freisetzung durch 5-HT1B/D-Agonisten (Triptane) oder der CGRP-Rezeptoren durch nicht peptidische Antagonisten (Gepante). Triptane sind bei einer Reihe von Patienten nicht ausreichend wirksam und können bei zu häufiger Anwendung einen Kopfschmerz bei Medikamentenübergebrauch verursachen, während die Weiterentwicklung der Gepante wegen lebertoxischer Nebenwirkungen unterbrochen worden ist. Neue hoffnungsvolle Entwicklungen in der Migränetherapie sind CGRP oder CGRP-rezeptorenblockierende monoklonale Antikörper, die in ersten klinischen Studien bei chronischer und häufiger Migräne geprüft worden sind. In diesem Übersichtsartikel werden die bekannten Wirkungen von CGRP in und außerhalb des trigeminalen Systems beleuchtet und auf dem Hintergrund der therapeutischen Effektivität sowie möglicher Nebenwirkungen bei der Blockierung des CGRP-Systems kritisch diskutiert.

Summary

Pharmacotherapy of migraine pain has largely been focused on calcitonin gene-related peptide (CGRP), a vasoactive neuropeptide mainly released from activated primary afferents. CGRP has multiple effects in different central and peripheral systems but its migraine promoting actions are largely unclear. Current clinical and experimental principles are based on reducing stimulated CGRP release by 5-HT1B/D agonists (triptans) or inhibiting CGRP receptors by non-peptide antagonists (gepants). Triptans are ineffective in a variety of patients and their frequent use may cause medication overuse headache, while further development of gepants has been interrupted due to liver toxic effects. Development and clinical trials of humanized monoclonal antibodies targeting CGRP or its receptors appear promising as a new strategy in the therapy of the growing problem of chronic migraine. This review discusses critically the sites and effects of CGRP receptor activation and inhibition within and outside of the trigeminal system relevant for the efficacy and safety of preventive therapeutic strategies targeting CGRP signaling.

 
  • Literatur

  • 1 Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 1982; 298: 240-244.
  • 2 Wimalawansa SJ. Amylin, calcitonin gene-related peptide, calcitonin, and adrenomedullin: a peptide superfamily. Crit Rev Neurobiol 1997; 11: 167-239.
  • 3 Amara SG, Arriza JL, Leff SE, Swanson LW, Evans RM, Rosenfeld MG. Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin gene-related peptide. Science 1985; 229: 1094-1097.
  • 4 Zaidi M, Moonga BS, Bevis PJ, Bascal ZA, Breimer LH. The calcitonin gene peptides: biology and clinical relevance. Crit Rev Clin Lab Sci 1990; 28: 109-174.
  • 5 Wimalawansa SJ, Emson PC, MacIntyre I. Regional distribution of calcitonin gene-related peptide and its specific binding sites in rats with particular reference to the nervous system. Neuroendocrinology 1987; 46: 131-136.
  • 6 Wimalawansa SJ. Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr Rev 1996; 17: 533-585.
  • 7 Zaidi M, Breimer LH, MacIntyre I. Biology of peptides from the calcitonin genes. Q J Exp Physiol Camb Engl 1987; 72: 371-408.
  • 8 Lundberg JM, Franco-Cereceda A, Alving K, Delay-Goyet P, Lou YP. Release of calcitonin gene-related peptide from sensory neurons. Ann N Y Acad Sci 1992; 657: 187-193.
  • 9 Wimalawansa SJ, Macintyre I. The presence of calcitonin gene-related peptide in human cerebrospinal fluid. Brain 1987; 110: 1647-1655.
  • 10 Evans BN, Rosenblatt MI, Mnayer LO, Oliver KR, Dickerson IM. CGRP-RCP, a novel protein required for signal transduction at calcitonin gene-related peptide and adrenomedullin receptors. J Biol Chem 2000; 275: 31438-31343.
  • 11 McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N. et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 1998; 393: 333-339.
  • 12 Hay DL, Poyner DR, Sexton PM. GPCR modulation by RAMPs. Pharmacol Ther 2006; 109: 173-197.
  • 13 Hay DL. What makes a CGRP2 receptor?. Clin Exp Pharmacol Physiol 2007; 34: 963-971.
  • 14 Walker CS, Eftekhari S, Bower RL, Wilderman A, Insel PA, Edvinsson L. et al. A second trigeminal CGRP receptor: function and expression of the AMY1 receptor. Ann Clin Transl Neurol 2015; 2: 595-608.
  • 15 van Rossum D, Hanisch UK, Quirion R. Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav Rev 1997; 21: 649-678.
  • 16 Ma W, Chabot J-G, Powell KJ, Jhamandas K, Dickerson IM, Quirion R. Localization and modulation of calcitonin gene-related peptide-receptor component protein-immunoreactive cells in the rat central and peripheral nervous systems. Neuroscience 2003; 120: 677-694.
  • 17 Ueda T, Ugawa S, Saishin Y, Shimada S. Expression of receptor-activity modifying protein (RAMP) mRNAs in the mouse brain. Brain Res Mol Brain Res 2001; 93: 36-45.
  • 18 Eftekhari S, Salvatore CA, Calamari A, Kane SA, Tajti J, Edvinsson L. Differential distribution of calcitonin gene-related peptide and its receptor components in the human trigeminal ganglion. Neuroscience 2010; 169: 683-696.
  • 19 O’Connor TP, van der Kooy D. Pattern of intracranial and extracranial projections of trigeminal ganglion cells. J Neurosci Off J Soc Neurosci 1986; 6: 2200-2207.
  • 20 Edvinsson L, Ekman R, Jansen I, McCulloch J, Uddman R. Calcitonin gene-related peptide and cerebral blood vessels: distribution and vasomotor effects. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 1987; 7: 720-728.
  • 21 Messlinger K, Hanesch U, Baumgärtel M, Trost B, Schmidt RF. Innervation of the dura mater encephali of cat and rat: ultrastructure and calcitonin gene-related peptide-like and substance P-like immunoreactivity. Anat Embryol (Berl) 1993; 188: 219-237.
  • 22 Keller JT, Marfurt CF. Peptidergic and serotoninergic innervation of the rat dura mater. J Comp Neurol 1991; 309: 515-534.
  • 23 Strassman AM, Weissner W, Williams M, Ali S, Levy D. Axon diameters and intradural trajectories of the dural innervation in the rat. J Comp Neurol 2004; 473: 364-376.
  • 24 Dux M, Rosta J, Sántha P, Jancsó G. Involvement of capsaicin-sensitive afferent nerves in the proteinase-activated receptor 2-mediated vasodilatation in the rat dura mater. Neuroscience 2009; 161: 887-894.
  • 25 Gupta S, Akerman S, van den Maagdenberg AMJM, Saxena PR, Goadsby PJ, van den Brink AM. Intravital microscopy on a closed cranial window in mice: a model to study trigeminovascular mechanisms involved in migraine. Cephalalgia 2006; 26: 1294-1303.
  • 26 Kurosawa M, Messlinger K, Pawlak M, Schmidt RF. Increase of meningeal blood flow after electrical stimulation of rat dura mater encephali: mediation by calcitonin gene-related peptide. Br J Pharmacol 1995; 114: 1397-1402.
  • 27 Williamson DJ, Hargreaves RJ, Hill RG, Shepheard SL. Intravital microscope studies on the effects of neurokinin agonists and calcitonin gene-related peptide on dural vessel diameter in the anaesthetized rat. Cephalalgia 1997; 17: 518-524.
  • 28 Jansen-Olesen I, Mortensen A, Edvinsson L. Calcitonin gene-related peptide is released from capsaicin-sensitive nerve fibres and induces vasodilatation of human cerebral arteries concomitant with activation of adenylyl cyclase. Cephalalgia 1996; 16: 310-316.
  • 29 Levy D, Burstein R, Strassman AM. Calcitonin gene-related peptide does not excite or sensitize meningeal nociceptors: implications for the pathophysiology of migraine. Ann Neurol 2005; 58: 698-705.
  • 30 Lennerz JK, Rühle V, Ceppa EP, Neuhuber WL, Bunnett NW, Grady EF. et al. Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribution. J Comp Neurol 2008; 507: 1277-1299.
  • 31 Vause CV, Durham PL. Calcitonin gene-related peptide differentially regulates gene and protein expression in trigeminal glia cells: findings from array analysis. Neurosci Lett 2010; 473: 163-167.
  • 32 Li J, Vause CV, Durham PL. Calcitonin gene-related peptide stimulation of nitric oxide synthesis and release from trigeminal ganglion glial cells. Brain Res 2008; 1196: 22-32.
  • 33 Bellamy J, Bowen EJ, Russo AF, Durham PL. Nitric oxide regulation of calcitonin gene-related peptide gene expression in rat trigeminal ganglia neurons. Eur J Neurosci 2006; 23: 2057-2066.
  • 34 Seiler K, Nusser JI, Lennerz JK, Neuhuber WL, Messlinger K. Changes in calcitonin gene-related peptide (CGRP) receptor component and nitric oxide receptor (sGC) immunoreactivity in rat trigeminal ganglion following glyceroltrinitrate pretreatment. J Headache Pain 2013; 14: 74.
  • 35 Simonetti M, Giniatullin R, Fabbretti E. Mechanisms mediating the enhanced gene transcription of P2X3 receptor by calcitonin gene-related peptide in trigeminal sensory neurons. J Biol Chem 2008; 283: 18743-18752.
  • 36 Chatchaisak D, Srikiatkhachorn A, Maneesri-le Grand S, Govitrapong P, Chetsawang B. The role of calcitonin gene-related peptide on the increase in transient receptor potential vanilloid-1 levels in trigeminal ganglion and trigeminal nucleus caudalis activation of rat. J Chem Neuroanat 2013; 47: 50-56.
  • 37 Tashiro T, Takahashi O, Satoda T, Matsushima R, Uemura-Sumi M, Mizuno N. Distribution of axons showing calcitonin gene-related peptide- and/or substance P-like immunoreactivity in the sensory trigeminal nuclei of the cat. Neurosci Res 1991; 11: 119-133.
  • 38 Henry MA, Nousek-Goebl NA, Westrum LE. Light and electron microscopic localization of calcitonin gene-related peptide immunoreactivity in lamina II of the feline trigeminal pars caudalis/medullary dorsal horn: a qualitative study. Synap N Y N 1993; 13: 99-107.
  • 39 Messlinger K, Fischer MJM, Lennerz JK. Neuropeptide effects in the trigeminal system: pathophysiology and clinical relevance in migraine. Keio J Med 2011; 60: 82-89.
  • 40 Storer RJ, Akerman S, Goadsby PJ. Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br J Pharmacol 2004; 142: 1171-1181.
  • 41 Burstein R, Noseda R, Borsook D. Migraine: multiple processes, complex pathophysiology. J Neurosci Off J Soc Neurosci 2015; 35: 6619-6629.
  • 42 Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 2002; 8: 136-142.
  • 43 Eikermann-Haerter K, Negro A, Ayata C. Spreading depression and the clinical correlates of migraine. Rev Neurosci 2013; 24: 353-363.
  • 44 Goadsby PJ, Edvinsson L, Ekman R. Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol 1988; 23: 193-196.
  • 45 Goadsby PJ, Edvinsson L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol 1993; 33: 48-56.
  • 46 Cernuda-Morollón E, Larrosa D, Ramón C, Vega J, Martínez-Camblor P, Pascual J. Interictal increase of CGRP levels in peripheral blood as a biomarker for chronic migraine. Neurology 2013; 81: 1191-1196.
  • 47 Lassen LH, Haderslev PA, Jacobsen VB, Iversen HK, Sperling B, Olesen J. CGRP may play a causative role in migraine. Cephalalgia 2002; 22: 54-61.
  • 48 Hansen JM, Hauge AW, Olesen J, Ashina M. Calcitonin gene-related peptide triggers migraine-like attacks in patients with migraine with aura. Cephalalgia 2010; 30: 1179-1186.
  • 49 Lassen LH, Jacobsen VB, Haderslev PA, Sperling B, Iversen HK, Olesen J. et al. Involvement of calcitonin gene-related peptide in migraine: regional cerebral blood flow and blood flow velocity in migraine patients. J Headache Pain 2008; 9: 151-157.
  • 50 Edvinsson L, Villalón CM, MaassenVanDenBrink A. Basic mechanisms of migraine and its acute treatment. Pharmacol Ther 2012; 136: 319-333.
  • 51 Buzzi MG, Carter WB, Shimizu T, Heath H, Moskowitz MA. Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior sagittal sinus during electrical stimulation of the trigeminal ganglion. Neuropharmacology 1991; 30: 1193-1200.
  • 52 Buzzi MG, Moskowitz MA. Evidence for 5-HT1B/1D receptors mediating the antimigraine effect of sumatriptan and dihydroergotamine. Cephalalgia 1991; 11: 165-168.
  • 53 Olesen J, Burstein R, Ashina M, Tfelt-Hansen P. Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol 2009; 8: 679-690.
  • 54 Bigal ME, Walter S, Rapoport AM. Calcitonin gene-related peptide (CGRP) and migraine current understanding and state of development. Headache 2013; 53: 1230-1244.
  • 55 Doods H, Hallermayer G, Wu D, Entzeroth M, Rudolf K, Engel W. et al. Pharmacological profile of BIBN4096BS, the first selective small molecule CGRP antagonist. Br J Pharmacol 2000; 129: 420-423.
  • 56 Ho TW, Ferrari MD, Dodick DW, Galet V, Kost J, Fan X. et al. Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: a randomised, placebo-controlled, parallel-treatment trial. Lancet 2008; 372: 2115-2123.
  • 57 Moore EL, Salvatore CA. Targeting a family B GPCR/RAMP receptor complex: CGRP receptor antagonists and migraine. Br J Pharmacol 2012; 166: 66-78.
  • 58 Ray BS, Wolff HG. Experimental studies on headache: pain sensitive structures of the head and their significance in headache. Arch Surg 1940; 1: 813-856.
  • 59 Stankewitz A, Aderjan D, Eippert F, May A. Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J Neurosci Off J Soc Neurosci 2011; 31: 1937-1943.
  • 60 Eftekhari S, Gaspar RC, Roberts R, Chen T-B, Zeng Z, Villarreal S. et al. Localization of CGRP receptor components and receptor binding sites in rhesus monkey brainstem: A detailed study using in situ hybridization, immunofluorescence and autoradiography. J Comp Neurol 2016; 524: 90-118.
  • 61 Charbit AR, Akerman S, Holland PR, Goadsby PJ. Neurons of the dopaminergic/calcitonin gene-related peptide A11 cell group modulate neuronal firing in the trigeminocervical complex: an electrophysiological and immunohistochemical study. J Neurosci Off J Soc Neurosci 2009; 29: 12532-12541.
  • 62 Pozo-Rosich P, Storer RJ, Charbit AR, Goadsby PJ. Periaqueductal gray calcitonin gene-related peptide modulates trigeminovascular neurons. Cephalalgia 2015; 35: 1298-1307.
  • 63 Hostetler ED, Joshi AD, Sanabria-Bohórquez S, Fan H, Zeng Z, Purcell M. et al. In vivo quantification of calcitonin gene-related peptide receptor occupancy by telcagepant in rhesus monkey and human brain using the positron emission tomography tracer [11C]MK-4232. J Pharmacol Exp Ther 2013; 347: 478-486.
  • 64 Eftekhari S, Edvinsson L. Calcitonin gene-related peptide (CGRP) and its receptor components in human and rat spinal trigeminal nucleus and spinal cord at C1-level. BMC Neurosci 2011; 12: 112.
  • 65 Fischer MJM, Koulchitsky S, Messlinger K. The nonpeptide calcitonin gene-related peptide receptor antagonist BIBN4096BS lowers the activity of neurons with meningeal input in the rat spinal trigeminal nucleus. J Neurosci Off J Soc Neurosci 2005; 25: 5877-5883.
  • 66 Sixt M-L, Messlinger K, Fischer MJM. Calcitonin gene-related peptide receptor antagonist olcegepant acts in the spinal trigeminal nucleus. Brain J Neurol 2009; 132: 3134-3141.
  • 67 Edvinsson L. CGRP receptor antagonists and antibodies against CGRP and its receptor in migraine treatment. Br J Clin Pharmacol 2015; 80: 193-199.
  • 68 Covasala O, Stirn SL, Albrecht S, De Col R, Messlinger K. Calcitonin gene-related peptide receptors in rat trigeminal ganglion do not control spinal trigeminal activity. J Neurophysiol 2012; 108: 431-440.
  • 69 Eftekhari S, Warfvinge K, Blixt FW, Edvinsson L. Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminovascular system. J Pain Off J Am Pain Soc 2013; 14: 1289-1303.
  • 70 Schwenger N, Dux M, de Col R, Carr R, Messlinger K. Interaction of calcitonin gene-related peptide, nitric oxide and histamine release in neurogenic blood flow and afferent activation in the rat cranial dura mater. Cephalalgia 2007; 27: 481-491.
  • 71 Levy D, Burstein R, Kainz V, Jakubowski M, Strassman AM. Mast cell degranulation activates a pain pathway underlying migraine headache. Pain 2007; 130: 166-176.
  • 72 Moskowitz MA. Neurogenic inflammation in the pathophysiology and treatment of migraine. Neurology 1993; 43 (Suppl. 03) S16-20.
  • 73 Theoharides TC, Donelan J, Kandere-Grzybowska K, Konstantinidou A. The role of mast cells in migraine pathophysiology. Brain Res Brain Res Rev 2005; 49: 65-76.
  • 74 Ba’albaki H, Rapoport A. Mast cells activate the renin angiotensin system and contribute to migraine: a hypothesis. Headache 2008; 48: 1499-1505.
  • 75 Bell D, McDermott BJ. Calcitonin gene-related peptide in the cardiovascular system: characterization of receptor populations and their (patho)physiological significance. Pharmacol Rev 1996; 48: 253-288.
  • 76 Brain SD, Grant AD. Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol Rev 2004; 84: 903-934.
  • 77 Holzer P. Peptidergic sensory neurons in the control of vascular functions: mechanisms and significance in the cutaneous and splanchnic vascular beds. Rev Physiol Biochem Pharmacol 1992; 121: 49-146.
  • 78 Itabashi A, Kashiwabara H, Shibuya M, Tanaka K, Masaoka H, Katayama S. et al. The interaction of calcitonin gene-related peptide with angiotensin II on blood pressure and renin release. J Hypertens Suppl Off J Int Soc Hypertens 1988; 6: S418-420.
  • 79 Arulmani U, Schuijt MP, Heiligers JPC, Willems EW, Villalón CM, Saxena PR. Effects of the calcitonin gene-related peptide (CGRP) receptor antagonist BIBN4096BS on alpha-CGRP-induced regional haemodynamic changes in anaesthetised rats. Basic Clin Pharmacol Toxicol 2004; 94: 291-297.
  • 80 Depré M, Macleod C, Palcza J, Behm M, de Lepeleire I, Han T. et al. Lack of hemodynamic interaction between CGRP-receptor antagonist telcagepant (MK-0974) and sumatriptan: results from a randomized study in patients with migraine. Cephalalgia 2013; 33: 1292-1301.
  • 81 Xu G, Jiang D. The role and mechanism of exogenous calcitonin gene-related peptide on mesenchymal stem cell proliferation and osteogenetic formation. Cell Biochem Biophys 2014; 69: 369-378.
  • 82 Kendall MD, al-Shawaf AA. Innervation of the rat thymus gland. Brain Behav Immun 1991; 5: 9-28.
  • 83 Bracci-Laudiero L, Aloe L, Buanne P, Finn A, Stenfors C, Vigneti E. et al. NGF modulates CGRP synthesis in human B-lymphocytes: a possible anti-inflammatory action of NGF?. J Neuroimmunol 2002; 123: 58-65.
  • 84 Wang H, Xing L, Li W, Hou L, Guo J, Wang X. Production and secretion of calcitonin gene-related peptide from human lymphocytes. J Neuroimmunol 2002; 130: 155-162.
  • 85 Linscheid P, Seboek D, Schaer DJ, Zulewski H, Keller U, Müller B. Expression and secretion of procalcitonin and calcitonin gene-related peptide by adherent monocytes and by macrophage-activated adipocytes. Crit Care Med 2004; 32: 1715-1721.
  • 86 Hou Q, Barr T, Gee L, Vickers J, Wymer J, Borsani E. et al. Keratinocyte expression of calcitonin gene-related peptide β: implications for neuropathic and inflammatory pain mechanisms. Pain 2011; 152: 2036-2051.
  • 87 Gupta S, Mehrotra S, Villalón C, De Vries R, Garrelds I, Saxena P. et al. Effects of female sex hormones on responses to CGRP, acetylcholine, and 5-HT in rat isolated arteries. Headache 2007; 47: 564-575.
  • 88 Cottrell GS, Alemi F, Kirkland JG, Grady EF, Corvera CU, Bhargava A. Localization of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1) in human gastrointestinal tract. Peptides 2012; 35: 202-211.
  • 89 Hagner S, Stahl U, Knoblauch B, McGregor GP, Lang RE. Calcitonin receptor-like receptor: identification and distribution in human peripheral tissues. Cell Tissue Res 2002; 310: 41-50.
  • 90 Mikami N, Matsushita H, Kato T, Kawasaki R, Sawazaki T, Kishimoto T. et al. Calcitonin gene-related peptide is an important regulator of cutaneous immunity: effect on dendritic cell and T cell functions. J Immunol Baltim 2011; 186: 6886-6893.
  • 91 Levite M. Nerve-driven immunity. The direct effects of neurotransmitters on T-cell function. Ann N Y Acad Sci 2000; 917: 307-321.
  • 92 Kulka M, Sheen CH, Tancowny BP, Grammer LC, Schleimer RP. Neuropeptides activate human mast cell degranulation and chemokine production. Immunology 2008; 123: 398-410.
  • 93 Li YJ, Song QJ, Xiao J. Calcitonin gene-related peptide: an endogenous mediator of preconditioning. Acta Pharmacol Sin 2000; 21: 865-869.
  • 94 Zheng L, Han J, Yao L, Sun Y-L, Jiang D, Hu S. et al. Up-regulation of calcitonin gene-related peptide protects streptozotocin-induced diabetic hearts from ischemia/reperfusion injury. Int J Cardiol 2012; 156: 192-198.
  • 95 Tache Y. Brainstem neuropeptides and vagal protection of the gastric mucosal against injury: role of prostaglandins, nitric oxide and calcitonin-gene related peptide in capsaicin afferents. Curr Med Chem 2012; 19: 35-42.
  • 96 Zhang J, Yan G, Liao J, Deng Z, Xue H, Wang L. et al. Leptin attenuates cerebral ischemia/reperfusion injury partially by CGRP expression. Eur J Pharmacol 2011; 671: 61-69.
  • 97 Aihara E, Sasaki Y, Ise F, Kita K, Nomura Y, Takeuchi K. Distinct mechanisms of acid-induced HCO3-secretion in normal and slightly permeable stomachs. Am J Physiol Gastrointest Liver Physiol 2006; 291: G464-471.
  • 98 Kroeger I, Erhardt A, Abt D, Fischer M, Biburger M, Rau T. et al. The neuropeptide calcitonin gene-related peptide (CGRP) prevents inflammatory liver injury in mice. J Hepatol 2009; 51: 342-353.
  • 99 Broome CS, Miyan JA. Neuropeptide control of bone marrow neutrophil production. A key axis for neuroimmunomodulation. Ann N Y Acad Sci 2000; 917: 424-34.
  • 100 Chéret J, Lebonvallet N, Buhé V, Carre JL, Misery L, Le Gall-Ianotto C. Influence of sensory neuropeptides on human cutaneous wound healing process. J Dermatol Sci 2014; 74: 193-203.
  • 101 Toda M, Suzuki T, Hosono K, Kurihara Y, Kurihara H, Hayashi I. et al. Roles of calcitonin gene-related peptide in facilitation of wound healing and angiogenesis. Biomed Pharmacother Bioméd Pharmacothérapie 2008; 62: 352-359.
  • 102 Kirthi V, Derry S, Moore RA. Aspirin with or without an antiemetic for acute migraine headaches in adults. Cochrane Database Syst Rev 2013; 4: CD008041.
  • 103 Law S, Derry S, Moore RA. Sumatriptan plus naproxen for acute migraine attacks in adults. Cochrane Database Syst Rev 2013; 10: CD008541.
  • 104 Cameron C, Kelly S, Hsieh S-C, Murphy M, Chen L, Kotb A. et al. Triptans in the Acute Treatment of Migraine: A Systematic Review and Network Meta-Analysis. Headache 2015; (55) (Suppl. 04) 221-235
  • 105 Rapoport AM. Acute treatment of migraine: established and emerging therapies. Headache 2012; (52) (Suppl. 02) 60-64
  • 106 Saper JR, Da Silva AN. Medication overuse headache: history, features, prevention and management strategies. CNS Drugs 2013; 27: 867-877.
  • 107 Ferrari A, Baraldi C, Sternieri E. Medication overuse and chronic migraine: a critical review according to clinical pharmacology. Expert Opin Drug Metab Toxicol 2015; 11: 1127-1144.
  • 108 Vater A, Jarosch F, Buchner K, Klussmann S. Short bioactive Spiegelmers to migraine-associated calcitonin gene-related peptide rapidly identified by a novel approach: tailored-SELEX. Nucleic Acids Res 2003; 31: e130.
  • 109 Denekas T, Tröltzsch M, Vater A, Klussmann S, Messlinger K. Inhibition of stimulated meningeal blood flow by a calcitonin gene-related peptide binding mirror-image RNA oligonucleotide. Br J Pharmacol 2006; 148: 536-543.
  • 110 Edvinsson L, Nilsson E, Jansen-Olesen I. Inhibitory effect of BIBN4096BS, CGRP(8-37), a CGRP antibody and an RNA-Spiegelmer on CGRP induced vasodilatation in the perfused and non-perfused rat middle cerebral artery. Br J Pharmacol 2007; 150: 633-640.
  • 111 Hoehlig K, Johnson KW, Pryazhnikov E, Maasch C, Clemens-Smith A, Purschke WG. et al. A novel CGRP-neutralizing Spiegelmer attenuates neurogenic plasma protein extravasation. Br J Pharmacol 2015; 172: 3086-3098.
  • 112 Zeller J, Poulsen KT, Sutton JE, Abdiche YN, Collier S, Chopra R. et al. CGRP function-blocking antibodies inhibit neurogenic vasodilatation without affecting heart rate or arterial blood pressure in the rat. Br J Pharmacol 2008; 155: 1093-1103.
  • 113 Dodick DW, Goadsby PJ, Silberstein SD, Lipton RB, Olesen J, Ashina M. et al. Safety and efficacy of ALD403, an antibody to calcitonin gene-related peptide, for the prevention of frequent episodic migraine: a randomised, double-blind, placebo-controlled, exploratory phase 2 trial. Lancet Neurol 2014; 13: 1100-1107.
  • 114 Dodick DW, Goadsby PJ, Spierings ELH, Scherer JC, Sweeney SP, Grayzel DS. Safety and efficacy of LY2951742, a monoclonal antibody to calcitonin gene-related peptide, for the prevention of migraine: a phase 2, randomised, double-blind, placebo-controlled study. Lancet Neurol 2014; 13: 885-892.
  • 115 Lenz R, Silberstein S, Dodick D, Reuter U, Ashina M, Saper J. et al. Results of a randomized, double-blind, placebo-controlled, phase 2 study to evaluate the efficacy and safety of AMG 334 for the prevention of episodic migraine. Abstr 17th Congr Int Headache Soc. 2015: OR01
  • 116 Bigal ME, Dodick DW, Rapoport AM, Silberstein SD, Ma Y, Yang R. et al. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of high-frequency episodic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol 2015; 14: 1081-1090.
  • 117 Vermeersch S, Benschop RJ, Van Hecken A, Monteith D, Wroblewski VJ, Grayzel D. et al. Translational pharmacodynamics of calcitonin gene-related peptide monoclonal antibody LY2951742 in a capsaicin-induced dermal blood flow model. J Pharmacol Exp Ther 2015; 354: 350-357.
  • 118 Walter S, Alibhoy A, Escandon R, Bigal ME. Evaluation of cardiovascular parameters in cynomolgus monkeys following IV administration of LBR-101, a monoclonal antibody against calcitonin gene-related peptide. mAbs 2014; 6: 871-878.
  • 119 Bigal ME, Escandon R, Bronson M, Walter S, Sudworth M, Huggins JP. et al. Safety and tolerability of LBR-101, a humanized monoclonal antibody that blocks the binding of CGRP to its receptor: Results of the Phase 1 program. Cephalalgia 2013; 34: 483-492.
  • 120 Bigal ME, Walter S, Bronson M, Alibhoy A, Escandon R. Cardiovascular and hemodynamic parameters in women following prolonged CGRP inhibition using LBR-101, a monoclonal antibody against CGRP. Cephalalgia 2014; 34: 968-976.
  • 121 Bigal ME, Edvinsson L, Rapoport AM, Lipton RB, Spierings ELH, Diener H-C. et al. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of chronic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol 2015; 14: 1091-1100.
  • 122 Pardridge WM, Kang YS, Buciak JL, Yang J. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate. Pharm Res 1995; 12: 807-816.
  • 123 Zlokovic BV, Skundric DS, Segal MB, Lipovac MN, Mackic JB, Davson H. A saturable mechanism for transport of immunoglobulin G across the blood-brain barrier of the guinea pig. Exp Neurol 1990; 107: 263-270.