Hamostaseologie 2008; 28(04): 195-202
DOI: 10.1055/s-0037-1617100
Original Article
Schattauer GmbH

Zytokinbeschichtete Stents als neue Werkzeuge der angiogenen Therapie

Cytokine-eluting stents as new drug-delivery devices for angiogenic therapy
S. Grundmann
1   Abteilung für Innere Medizin III, Universitätsklinikum, Freiburg im Breisgau
,
I. Hoefer
2   Laboratory for Experimental Cardiology, University Medical Center, Utrecht/Niederlande
,
C. Bode
1   Abteilung für Innere Medizin III, Universitätsklinikum, Freiburg im Breisgau
› Author Affiliations
Further Information

Publication History

Publication Date:
29 December 2017 (online)

Zusammenfassung

Die Stimulation des endogenen adaptiven Gefäßwachstums (Angiogenese, Arteriogenese) stellt einen vielversprechenden alternativen Therapieansatz zur Behandlung okklusiver Gefäßerkrankungen dar. Trotz der Vielzahl experimentell wirksamer Substanzen ist der erfolgreiche Transfer in den klinischen Gebrauch jedoch ausgeblieben. Als Hauptgrund für die beobachteten neutralen Effekte wird unter anderem die Art der Applikation angesehen. Obwohl präklinische Studien die Überlegenheit einer kontinuierlichen intraarteriellen Gabe gezeigt haben, wurde mangels technischer Machbarkeit in klinischen Studien auf Bolustherapie bzw. intravenöse oder subkutane Applikation ausgewichen. Die Fortschritte in der Entwicklung der ˶drug eluting stents“ eröffnen neue Möglichkeiten der lokalen Medikamentenfreisetzung, insbesondere im Koronarstromgebiet. Die Abgabe von Wachstumsfaktoren wie TGF-beta von solchen Stents ließ sich experimentell bereits zur Stimulation des Kollateralwachstums nutzen. Ein solcher Ansatz wird in Zukunft weitere Möglichkeiten der ortbegrenzten Therapie schaffen und z. B. die gezielte Stabilisierung atherosklerotischer Plaques ermöglichen.

Summary

The stimulation of the endogenous adaptive vessel growth (angiogenesis, arteriogenesis) provides a promising therapeutic approach for the large number of patients with vascular occlusive disease that is not eligible for current interventional treatments. Despite the proven efficacy of various factors in pre-clinical experimental studies, the successful translation of angiogenic therapies into clinical practice yet remains to be made. Most authors identified the mode of administrations as culprit for the neutral effects observed in the majority of clinical trials. Although experimental studies have proven the superiority of continuous intra-arterial application above other routes (iv, im, sc), clinical trials focused on either bolus therapy, iv or sc application respectively, due to the lack of technical solutions to fulfill the requirements of intra-arterial delivery. The recent developments in the field of drug eluting stents may offer new possibilities for local drug delivery. Local release of cytokines, such as TGF-beta, has been shown to induce collateral growth in an experimental model of PAD. Other factors might eventually render useful to stabilize atherosclerotic plaques downstream of the site of stent implantation.

 
  • Literatur

  • 1 Allen LA, Terjung RL, Yang HT. Exogenous basic fibroblast growth factor increases collateral blood flow in female rats with femoral artery occlusion. J Cardiovasc Pharmacol 2006; 47: 146-154.
  • 2 Barger AC, Beeuwkes 3rd R, Lainey LL. et al. Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 1984; 310: 175-177.
  • 3 Bartorelli AL, Trabattoni D, Fabbiocchi F. et al. Synergy of passive coating and targeted drug delivery: the tacrolimus-eluting Janus CarboStent. J Interv Cardiol 2003; 16: 499-505.
  • 4 Baumgartner I, Rauh G, Pieczek A. et al. Lowerextremity edema associated with gene transfer of naked DNA encoding vascular endothelial growth factor. Ann Intern Med 2000; 132: 880-884.
  • 5 Birkenhauer P, Yang Z, Gander B. Preventing restenosis in early drug-eluting stent era: recent developments and future perspectives. J Pharm Pharmacol 2004; 56: 1339-1356.
  • 6 Blomley MJ, Cooke JC, Unger EC. et al. Microbubble contrast agents: a new era in ultrasound. Bmj 2001; 322: 1222-1225.
  • 7 Brown LF, Detmar M, Tognazzi K. et al. Uterine smooth muscle cells express functional receptors (flt-1 and KDR) for vascular permeability factor/ vascular endothelial growth factor. Lab Invest 1997; 76: 245-255.
  • 8 Buschmann IR, Hoefer IE, van Royen N. et al. GM-CSF: a strong arteriogenic factor acting by amplification of monocyte function. Atherosclerosis 2001; 159: 343-356.
  • 9 Celletti FL, Hilfiker PR, Ghafouri P. et al. Effect of human recombinant vascular endothelial growth factor165 on progression of atherosclerotic plaque. J Am Coll Cardiol 2001; 37: 2126-2130.
  • 10 Celletti FL, Waugh JM, Amabile PG. et al. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med 2001; 7: 425-429.
  • 11 Cipollone F, Fazia M, Mincione G. et al. Increased expression of transforming growth factor-beta1 as a stabilizing factor in human atherosclerotic plaques. Stroke 2004; 35: 2253-2257.
  • 12 Di Mario C, Ferrante G. Biodegradable drug-elu ting stents: promises and pitfalls. Lancet 2008; 371: 873-874.
  • 13 Dvorak HF, Senger DR, Dvorak AM. et al. Regulation of extravascular coagulation by microvascular permeability. Science 1985; 227: 1059-1061.
  • 14 Edelman ER, Nugent MA, Smith LT. et al. Basic fibroblast growth factor enhances the coupling of intimal hyperplasia and proliferation of vasa vasorum in injured rat arteries. J Clin Invest 1992; 89: 465-473.
  • 15 Engelmann MG, Theiss HD, Hennig-Theiss C. et al. Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute ST-segment elevation myocardial infarction undergoing late revascularization: final results from the G-CSF-STEMI (Granulocyte Colony-Stimulating Factor ST-Segment Elevation Myocardial Infarction) trial. J Am Coll Cardiol 2006; 48: 1712-1721.
  • 16 Erbel R, Di Mario C, Bartunek J. et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 2007; 369: 1869-1875.
  • 17 Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature 2005; 438: 967-974.
  • 18 Finkelstein A, McClean D, Kar S. et al. Local drug delivery via a coronary stent with programmable release pharmacokinetics. Circulation 2003; 107: 777-784.
  • 19 Grainger DJ, Kemp PR, Metcalfe JC. et al. The serum concentration of active transforming growth factor-beta is severely depressed in advanced atherosclerosis. Nat Med 1995; 1: 74-79.
  • 20 Grines CL, Watkins MW, Mahmarian JJ. et al. A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J Am Coll Cardiol 2003; 42: 1339-1347.
  • 21 Grundmann S, van Royen N, Gonzalez N. et al. A new intra-arterial delivery platform for pro-arteriogenic compounds to stimulate collateral artery growth via transforming growth factor beta1 release. J Am Coll Cardiol 2007; 50: 351-358.
  • 22 Hedman M, Hartikainen J, Syvanne M. et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation 2003; 107: 2677-2683.
  • 23 Henry TD, Annex BH, McKendall GR. et al. The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation 2003; 107: 1359-1365.
  • 24 Herold-Mende C, Steiner HH, Andl T. et al. Expression and functional significance of vascular endothelial growth factor receptors in human tumor cells. Lab Invest 1999; 79: 1573-1582.
  • 25 Hill JM, Syed MA, Arai AE. et al. Outcomes and risks of granulocyte colony-stimulating factor in patients with coronary artery disease. J Am Coll Cardiol 2005; 46: 1643-1648.
  • 26 Hoefer I, van Royen N, Buschmann I. et al. Time ween inflammation and fibrosis during plaque progression. Arterioscler Thromb Vasc Biol 2002; 22: 975-982.
  • 27 Hwang CW, Wu D, Edelman ER. Physiological transport forces govern drug distribution for stentbased delivery. Circulation 2001; 104: 600-605.
  • 28 Imada T, Tatsumi T, Mori Y. et al. Targeted delivery of bone marrow mononuclear cells by ultrasound destruction of microbubbles induces both angiogenesis and arteriogenesis response. Arterioscler Thromb Vasc Biol 2005; 25: 2128-2134.
  • 29 Ince H, Petzsch M, Kleine HD. et al. Prevention of left ventricular remodeling with granulocyte colony- stimulating factor after acute myocardial infarction: final 1-year results of the Front-Integrated Revascularization and Stem Cell Liberation in Evolving Acute Myocardial Infarction by Granulocyte Colony-Stimulating Factor (FIRSTLINEAMI) Trial. Circulation 2005; 112: I73-80.
  • 30 Ito WD, Arras M, Winkler B. et al. Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. Circ Res 1997; 80: 829-837.
  • 31 Joner M, Finn AV, Farb A. et al. Pathology of drugeluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 2006; 48: 193-202.
  • 32 Keck PJ, Hauser SD, Krivi G. et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 1989; 246: 1309-1312.
  • 33 Krucoff MW, Kereiakes DJ, Petersen JL. et al. A novel bioresorbable polymer paclitaxel-eluting stent for the treatment of single and multivessel coronary disease: primary results of the COSTAR (Cobalt Chromium Stent With Antiproliferative for Restenosis) II study. J Am Coll Cardiol 2008; 51: 1543-1552.
  • 34 Lazarous DF, Shou M, Stiber JA. et al. Pharmacodynamics of basic fibroblast growth factor: route of administration determines myocardial and systemic distribution. Cardiovasc Res 1997; 36: 78-85.
  • 35 Lazarous DF, Unger EF, Epstein SE. et al. Basic fibroblast growth factor in patients with intermittent claudication: results of a phase I trial. J Am Coll Cardiol 2000; 36: 1239-1244.
  • 36 Lederman RJ, Mendelsohn FO, Anderson RD. et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet 2002; 359: 2053-2058.
  • 37 Leong-Poi H, Christiansen J, Heppner P. et al. Assessment of endogenous and therapeutic arteriogenesis by contrast ultrasound molecular imaging of integrin expression. Circulation 2005; 111: 3248-3254.
  • 38 Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res 2006; 66: 605-612.
  • 39 Luo Y, Zhou H, Krueger J. et al. Targeting tumorassociated macrophages as a novel strategy against breast cancer. J Clin Invest 2006; 116: 2132-2141.
  • 40 Lutgens E, Gijbels M, Smook M. et al. Transforming growth factor-beta mediates balance bet ween inflammation and fibrosis during plaque progression. Arterioscler Thromb Vasc Biol 2002; 22: 975-982.
  • 41 Makinen K, Manninen H, Hedman M. et al. Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: a randomized, placebo-controlled, double-blinded phase II study. Mol Ther 2002; 6: 127-133.
  • 42 Markkanen JE, Rissanen TT, Kivela A. et al. Growth factor-induced therapeutic angiogenesis and arteriogenesis in the heart--gene therapy. Cardiovasc Res 2005; 65: 656-664.
  • 43 Mazur A, Deylig A, Schaper W. et al. Biopanning of single-chain antibodies expressing phages reveals distinct expression patterns of angiogenic and arteriogenic vessels. Endothelium 2003; 10: 277-284.
  • 44 McGowan TA, Zhu Y, Sharma K. Transforming growth factor-beta: a clinical target for the treatment of diabetic nephropathy. Curr Diab Rep 2004; 4: 447-454.
  • 45 Meier P, Zbinden R, Togni M. et al. Coronary collateral function long after drug-eluting stent implantation. J Am Coll Cardiol 2007; 49: 15-20.
  • 46 Melikian N, Wijns W. Drug-eluting stents: a critique. Heart 2008; 94: 145-152.
  • 47 Nabel EG, Yang ZY, Plautz G. et al. Recombinant fibroblast growth factor-1 promotes intimal hyperplasia and angiogenesis in arteries in vivo. Nature 1993; 362: 844-846.
  • 48 Ormiston JA, Serruys PW, Regar E. et al. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet 2008; 371: 899-907.
  • 49 Peters BA, Diaz LA, Polyak K. et al. Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med 2005; 11: 261-262.
  • 50 Post MJ, Laham R, Sellke FW. et al. Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc Res 2001; 49: 522-531.
  • 51 Rajagopalan S, Mohler 3rd ER, Lederman RJ. et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 2003; 108: 1933-1938.
  • 52 Rajanayagam MA, Shou M, Thirumurti V. et al. Intracoronary basic fibroblast growth factor enhances myocardial collateral perfusion in dogs. J Am Coll Cardiol 2000; 35: 519-526.
  • 53 Reddy K, Zhou Z, Schadler K. et al. Bone Marrow Subsets Differentiate into Endothelial Cells and Pericytes Contributing to Ewing’s Tumor Vessels. Mol Cancer Res 2008; 6: 929-936.
  • 54 Ripa RS, Jorgensen E, Wang Y. et al. Stem cell mobilization induced by subcutaneous granulocytecolony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation 2006; 113: 1983-1992.
  • 55 Sahni A, Simpson-Haidaris PJ, Sahni SK. et al. Fibrinogen synthesized by cancer cells augments the proliferative effect of fibroblast growth factor-2 (FGF-2). J Thromb Haemost 2008; 6: 176-183.
  • 56 Seiler C, Pohl T, Wustmann K. et al. Promotion of collateral growth by granulocyte-macrophage colony- stimulating factor in patients with coronary artery disease: a randomized, double-blind, placebo- controlled study. Circulation 2001; 104: 2012-2017.
  • 57 Serruys PW, Sianos G, Abizaid A. et al. The effect of variable dose and release kinetics on neointimal hyperplasia using a novel paclitaxel-eluting stent platform: the Paclitaxel In-Stent Controlled Elution Study (PISCES). J Am Coll Cardiol 2005; 46: 253-260.
  • 58 Simons M, Annex BH, Laham RJ. et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 2002; 105: 788-793.
  • 59 Simons M. Angiogenesis: where do we stand now?. Circulation 2005; 111: 1556-1566.
  • 60 Srivastava S, Terjung RL, Yang HT. Basic fibroblast growth factor increases collateral blood flow in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2003; 285: H1190-1197.
  • 61 Stabile E, Burnett MS, Watkins C. et al. Impaired arteriogenic response to acute hindlimb ischemia in CD4-knockout mice. Circulation 2003; 108: 205-210.
  • 62 Takahashi H, Letourneur D, Grainger DW. Delivery of large biopharmaceuticals from cardiovas-cular stents: a review. Biomacromolecules 2007; 8: 3281-3293.
  • 63 Takeshita S, Zheng LP, Brogi E. et al. Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 1994; 93: 662-670.
  • 64 Unger EF, Banai S, Shou M. et al. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol 1994; 266: H1588-1595.
  • 65 van der Hoeven BL, Pires NM, Warda HM. et al. Drug-eluting stents: results, promises and problems. Int J Cardiol 2005; 99: 9-17.
  • 66 van Royen N, Hoefer I, Bottinger M. et al. Local monocyte chemoattractant protein-1 therapy increases collateral artery formation in apolipoprotein E-deficient mice but induces systemic monocytic CD11b expression, neointimal formation, and plaque progression. Circ Res 2003; 92: 218-225.
  • 67 van Royen N, Hoefer I, Buschmann I. et al. Exogenous application of transforming growth factor beta 1 stimulates arteriogenesis in the peripheral circulation. Faseb J 2002; 16: 432-434.
  • 68 van Royen N, Schirmer SH, Atasever B. et al. START Trial: a pilot study on STimulation of ARTeriogenesis using subcutaneous application of granulocyte-macrophage colony-stimulating factor as a new treatment for peripheral vascular disease. Circulation 2005; 112: 1040-1046.
  • 69 Vedula SS, Krzystolik MG. Antiangiogenic therapy with anti-vascular endothelial growth factor modalities for neovascular age-related macular degeneration. Cochrane Database Syst Rev 2008; CD005139.
  • 70 Waksman R. Promise and challenges of bioabsorbable stents. Catheter Cardiovasc Interv 2007; 70: 407-414.
  • 71 Witzenbichler B, Asahara T, Murohara T. et al. Vascular endothelial growth factor-C (VEGFC/ VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am J Pathol 1998; 153: 381-394.
  • 72 Yang HT, Deschenes MR, Ogilvie RW. et al. Basic fibroblast growth factor increases collateral blood flow in rats with femoral arterial ligation. Circ Res 1996; 79: 62-69.
  • 73 Zbinden S, Zbinden R, Meier P. et al. Safety and efficacy of subcutaneous-only granulocyte-macrophage colony-stimulating factor for collateral growth promotion in patients with coronary artery disease. JAm Coll Cardiol 2005; 46: 1636-1642.
  • 74 Zohlnhofer D, Ott I, Mehilli J. et al. Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. Jama 2006; 295: 1003-1010.