Tierarztl Prax Ausg G Grosstiere Nutztiere 2010; 38(06): 339-347
DOI: 10.1055/s-0038-1624007
Originalartikel
Schattauer GmbH

Peripartaler Energie- und Fettstoffwechsel bei Färsen unterschiedlicher Aufzuchtintensität

Untersuchung anhand ausgewählter ParameterInfluence of different diets during the rearing period on peripartal energy and fat metabolism in heifers
D. Goerigk
1   Medizinische Tierklinik, Veterinärmedizinische Fakultät, Universität Leipzig
,
I. Steinhöfel
2   Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, Abteilung Tierische Erzeugung, LVG Köllitsch
,
J. Gottschalk
3   Veterinär-Physiologisch-Chemisches Institut, Veterinärmedizinische Fakultät, Universität Leipzig
,
M. Fürll
1   Medizinische Tierklinik, Veterinärmedizinische Fakultät, Universität Leipzig
› Author Affiliations
Further Information

Publication History

Eingegangen: 28 April 2010

Akzeptiert nach Revision: 25 August 2010

Publication Date:
06 January 2018 (online)

Zusammenfassung:

Ziel dieser Studie war, Auswirkungen unterschiedlicher Fütterungsprotokolle während der Aufzuchtperiode auf den peripartalen Energie- und Fettstoffwechsel bei Färsen zu untersuchen. Material und Methoden: Aus 46 Kälbern der Rasse Holstein Friesian wurden drei Fütterungsgruppen gebildet. Bei Tieren der Gruppe 1 erfolgte eine optimale Fütterung (Kontrollgruppe), bei Tieren der Gruppe 2 eine intensive und bei Probanden der Gruppe 3 eine restriktive Fütterung. Vor und nach der Kalbung wurde Blut entnommen und das Gewicht sowie die Rückenfettdicke der Rinder bestimmt. Im Serum wurden die Konzentrationen der folgenden Parameter gemessen: Insulin, Insulin-like growth factor 1 (IGF-1), Glukose, freie Fettsäuren (FFS), Bilirubin, Cholesterin, Harnstoff, Betahydroxybutyrat (BHB) sowie Gesamteiweiß. Ergebnisse: Die intensiv aufgezogenen Tiere konzipierten signifikant (p < 0,05) früher als die Färsen der beiden anderen Gruppen. Signifikante Unterschiede (p < 0,05) zwischen den Gruppen ergaben sich hinsichtlich der IGF-1-, Insulin-, FFS- und Cholesterinkonzentrationen ante partum sowie den Bilirubin-, und FFS-Konzentrationen post partum. Schlussfolgerung und klinische Relevanz: Es konnte gezeigt werden, dass sich eine unterschiedliche Intensität bei der Kälberaufzucht sowohl auf die Zuchtreife als auch auf den peripartalen Energie- und Fettstoffwechsel von Färsen auswirkt, wobei der Stoffwechsel der intensiv aufgezogenen Färsen eine stärkere Belastung aufweist. Auch die Milchleistung und die Fruchtbarkeit werden durch die unterschiedliche Aufzuchtintensität beeinflusst.

Summary:

Objective: The aim of this study was to investigate whether different diets during the rearing period influence the peripartal energy and fat metabolism of heifers. Material and methods: 46 German Holstein calves were divided into three groups. Group 1 was fed with an optimal diet (control group), group 2 was fed with a highly-concentrated diet and group 3 received a low-concentrated diet. Blood samples were taken one week ante partum, three days post partum as well as 4 weeks post partum. At the same time, body weight and back fat thickness were determined. Serum concentrations of the following blood para - meters were measured: insulin, insulin-like growth factor 1 (IGF-1), glucose, free fatty acids (FFA), bilirubin, cholesterol, urea, beta-hydroxybutyrate (BHB) and total protein. Results: Heifers fed with the highconcentrated diet reached puberty significantly earlier (p < 0.05) than the heifers of the other groups. Significant differences (p < 0.05) between the groups could be detected in the concentrations of IGF-1, insulin, FFA and cholesterol ante partum as well as bilirubin and FFA post partum. In all three groups the insulin concentration was significantly higher ante partum. In contrast, the concentration of IGF-1 was significantly lower ante partum in all groups. The concentration of FFA increased significantly in all groups shortly after calving. Conclusion and clinical relevance: Different diets during the rearing period of calves influence the onset of puberty as well as the peripartal energy and fat metabolism of heifers. Heifers of the high-energy group showed more metabolic imbalances. Even the milk yield in the first lactation and the fertility post partum were affected.

 
  • Literatur

  • 1 Abeni F, Calamari L, Stefanini L, Pirlo G. Effects of daily gain in pre- and postpubertal replacement dairy heifers on body condition score, body size, metabolic profile, and future milk production. J Dairy Sci 2000; 83: 1468-1478.
  • 2 Abribat T, Lapierre H, Dubreuil P, Pelletier G, Gaudreau P, Brazeau P, Petitclerc D. Insulin-like growth factor-1 concentration in Holstein female cattle: variations with age, stage of lactation and growth hormone-releasing factor administration. Domest Anim Endocrinol 1990; 7 (Suppl. 01) 93-102.
  • 3 Blum WF, Breier BH. Radioimmunoassays for IGFs and IGFBPs. Growth Regul 1994; 4 (Suppl. 01) 11-19.
  • 4 Brickell JS, McGowan MM, Wathes DC. Effect of management factors and blood metabolites during the rearing period on growth in dairy heifers on UK farms. Domest Anim Endocrinol 2009; 36: 67-81.
  • 5 Brickell JS, Bourne N, McGowan MM, Wathes DC. Effect of growth and development during the rearing period on the subsequent fertility of nulliparous Holstein-Friesian heifers. Theriogenology 2009; 72: 408-416.
  • 6 Chelikani PK, Ambrose JD, Keisler DH, Kennelly JJ. Effect of short-term fasting on plasma concentrations of leptin and other hormones and metabolites in dairy cattle. Domest Anim Endocrinol 2004; 26: 33-48.
  • 7 Chelikani PK, Ambrose DJ, Keisler DH, Kennelly JJ. Effects of dietary energy and protein density on plasma concentrations of leptin and metabolic hormones in dairy heifers. J Dairy Sci 2009; 92: 1430-1441.
  • 8 Davis Rincker LE, Weber Nielsen MS, Chapin LT, Liesman JS, Vandehaar MJ. Effects of feeding prepubertal heifers a high-energy diet for three, six or twelve weeks on feed intake, body growth and fat deposition. J Dairy Sci 2008; 91: 1913-1925.
  • 9 Freetly HC, Ferrell CL, Jenkins TG. Production performance of beef cows raised on three different nutritionally controlled heifer development programs. J Anim Sci 2001; 79: 819-826.
  • 10 Freetly HC, Cundiff LV. Reproductive performance, calf growth, and milk production of first-calf heifers sired by seven breeds and raised on different levels of nutrition. J Anim Sci 1998; 76: 1513-1522.
  • 11 Fürll M, Dabbagh MN, Jäkel L. Body condition and dislocated abomasum: comparative investigations into back fat thickness and additional criteria in cattle. Dtsch Tierarzt Wochenschr 1999; 106 (Suppl. 01) 5-9.
  • 12 Gasser CL, Behlke EJ, Grum DE, Day ML. Effect of timing of feeding a highconcentrate diet on growth and attainment of puberty in early-weaned heifers. J Anim Sci 2006; 84: 3118-3122.
  • 13 GfE (Gesellschaft für Ernährungsphysiologie: Ausschuss für Bedarfsnormen).. Proteinbedarf und Proteinversorgung. In: Empfehlungen zur Energieund Nährstoffversorgung der Milchkühe und Aufzuchtrinder. Frankfurt am Main: DLG-Verlag; 2001
  • 14 Gong JG. Influence of metabolic hormones and nutrition on ovarian follicle development in cattle: practical implications. Domest Anim Endocrinol 2002; 23: 229-241.
  • 15 Hoffman PC. Optimum body size of Holstein replacement heifers. J Anim Sci 1997; 75: 836-845.
  • 16 Hoffman PC, Simson CR, Wattiaux M. Limit feeding of gravid Holstein heifers: Effect on growth, manure nutrient excretion, and subsequent early lactation performance. J Dairy Sci 2007; 90: 946-954.
  • 17 Johnsson ID, Obst JM. The effect of level of nutrition before and after 8 months of age on subsequent milk and calf production of beef heifers over three lactations. Anim Prod 1984; 38: 57-68.
  • 18 Kratzsch J. Persönliche Mitteilung. 1996
  • 19 Lucy M. Regulation of ovarian follicular growth by somatotropin and insulin- like growth factors in cattle. J Dairy Sci 2000; 83: 1635-1647.
  • 20 Macdonald KA, Penno JW, Bryant AM, Roche JR. Effect of feeding level preand post-puberty and body weight at first calving on growth, milk production, and fertility in grazing dairy cows. J Dairy Sci 2005; 88: 3363-3375.
  • 21 Mee JF. Prevalence and risk factors for dystocia in dairy cattle: A review. Vet J 2008; 176: 93-101.
  • 22 Meyer MJ, Capuco AV, Ross DA, Lintault LM, Van Amburgh ME. Developmental and nutritional regulation of the prepubertal heifer mammary gland: I. Parenchyma and fat pad mass and composition. J Dairy Sci 2006; 89: 4289-4297.
  • 23 Meyer MJ, Capuco AV, Ross DA, Lintault LM, Van Amburgh ME. Developmental and nutritional regulation of the prepubertal bovine mammary gland: II. Epithelial cell proliferation, parenchymal accretion rate, and allometric growth. J Dairy Sci 2006; 89: 4298-4304.
  • 24 Mourits MCM, Galligan DT, Dijkhuizen AA, Huirne RBM. Optimization of dairy heifer management decisions based on production conditions of Pennsylvania. J Dairy Sci 2000; 83: 1989-1997.
  • 25 Obese FY, Rabiee AR, Macmillan KL, Egan AR, Humphrys S, Anderson GA. Variation in plasma concentrations of insulin-like growth factor-1 in pasture- fed Holstein cows. J Dairy Sci 2008; 91: 1814-1821.
  • 26 Pushpakumara PGA, Gardner NH, Reynolds CK, Beever DE, Wathes DC. Relationships between transition period diet, metabolic parameters and fertility in lactating dairy cows. Theriogenology 2003; 60: 1165-1185.
  • 27 Radcliff RP, Vandehaar MJ, Chapin LT, Pilbeam TE, Beede DK, Stanisiewski EP, Tucker HA. Effect of diet and injection of bovine somatotropin on prepubertal growth and first-lactation milk yields of Holstein cows. J Dairy Sci 2000; 83: 23-29.
  • 28 Romano MA, Barnabe VH, Kastelic JP, de Oliviera CA, Romano RM. Follicular dynamics in heifers during pre-pubertal and pubertal period kept under two levels of dietary energy intake. Reprod Dom Anim 2007; 42: 616-622.
  • 29 Röpke R, Schams D, Schwarz FJ, Kirchgessner M. Growth-related hormones in plasma of bulls, steers and heifers given food with two different energy levels. Anim Prod 1994; 59: 367-377.
  • 30 Schröder U, Staufenbiel R. Konditionsbeurteilung per Ultraschall in der Herdenbetreuung. Teil 2: Rückenfettdicke und Fruchtbarkeit. Tierärztl Prax 2003; 31 G 243-247.
  • 31 Schröder U, Staufenbiel R. Konditionsbeurteilung per Ultraschall in der Herdenbetreuung. Teil 3: Berechnung von Referenzwerten. Tierärztl Prax 2003; 31 G 300-305.
  • 32 Schröder U, Staufenbiel R. Invited review: Methods to determine body fat reserves in the dairy cow with special regard to ultrasonographic measurement of backfat thickness. J Dairy Sci 2006; 89: 1-14.
  • 33 Sejrsen K, Purup S. Influence of prepubertal feeding level on milk yield potential of dairy heifers: a review. J Anim Sci 1997; 75: 828-835.
  • 34 Spicer LJ, Crowe MA, Prendiville DJ, Goulding D, Enright WJ. Systemic but not intraovarian concentrations of insulin-like growth factor-1 are affected by short-term fasting. Biol Reprod 1992; 46: 920-925.
  • 35 Sternbauer K, Luthman J. Insulin sensitivity of heifers on different diets. Acta Vet Scand 2002; 43: 107-114.
  • 36 Taylor VJ, Cheng Z, Pushpakumara PGA, Beever DE, Wathes DC. Relationships between the plasma concentrations of insulin-like growth factor-1 in dairy cows and their fertility and milk yield. Vet Rec 2004; 155: 583-588.
  • 37 Van Amburgh ME, Galton DM, Bauman DE, Everett RW, Fox DG, Chase LE, Erb HN. Effects of three prepubertal body growth rates on performance of Holstein heifers during first lactation. J Dairy Sci 1998; 81: 527-538.