Schlaf 2013; 2(04): 213-217
DOI: 10.1055/s-0038-1626073
REVIEW OSAS & Typ-2-Diabetes
Schattauer GmbH

Obstruktive Schlafapnoe und Typ-2-Diabetes

Joachim H. Ficker
1   Medizinische Klinik 3 (Pneumologie, Allergologie, Schlafmedizin) am Klinikum Nürnberg, Lungentumorzentrum, Schlafmedizinisches Zentrum Prof.-Ernst-Nathan-Str. 1 90419 Nürnberg, Email: ficker@klinikum-nuernberg.de
› Author Affiliations
Further Information

Publication History

Publication Date:
10 February 2018 (online)

Sowohl die obstruktive Schlafapnoe (OSA), als auch der Typ-2-Diabetes (DM2) sind häufige Erkrankungen, die auch oft gemeinsam auftreten. Beide Erkrankungen sind eng mit der Adipositas als gemeinsamem Risikofaktor verbunden. Epidemiologische Studien zeigen jedoch, dass sowohl Diabetiker unabhängig von ihrer Adipositas ein erhöhtes Risiko haben, an einem obstruktiven Schlafapnoe-Syndrom zu leiden. Umgekehrt haben auch OSA-Patienten unabhängig von ihrer Adipositas ein erhöhtes Risiko, an einem DM2 zu erkranken. Epidemiologische Beobachtungen haben in den vergangenen Jahren intensive Studien veranlasst, die uns heute erlauben, zumindest manche der pathophysiologischen Mechanismen zu verstehen, welche die Krankheitsbilder der obstruktiven Schlafapnoe und des Diabetes mellitus Typ 2 miteinander verbinden.

 
  • Literatur

  • 1 Aurora RN, Punjabi NM. Obstructive sleep apnoea and type 2 diabetes mellitus: a bidirectional association. The Lancet Respiratory Medicine 2013; 1 (04) 329-338.
  • 2 Al-Delaimy WK, Manson JE, Willett WC. et al. Snoring as a risk factor for type II diabetes mellitus: a prospective study. Am J Epidemiol 2002; 155 (05) 387-393.
  • 3 Elmasry A, Lindberg E, Berne C. et al. Sleep-disordered breathing and glucose metabolism in hypertensive men: a population-based study. JIM 2001; 249 (02) 153-161.
  • 4 Punjabi NM, Shahar E, Redline S, Gottlieb DJ, Givelber R, Resnick HE. Sleep-disordered breathing, glucose intolerance, and insulin resistance: the Sleep Heart Health Study. Am J Epidemiol 2004; 160 (06) 521-530.
  • 5 Marshall NS, Wong KK, Phillips CL. et al. Is sleep apnea an independent risk factor for prevalent and incident diabetes in the Busselton Health Study?. J Clin Sleep Med 2009; 5 (01) 15-20.
  • 6 Reichmuth KJ, Austin D, Skatrud JB, Young T. Association of sleep apnea and type II diabetes: a population-based study. Am J Respiratory and Critical Care Medicine 2005; 172 (12) 1590-1595.
  • 7 Punjabi NM, Polotsky VY. Disorders of glucose metabolism in sleep apnea. J Appl Physiol (1985) 2005; Nov; 99 (05) 1998-2007.
  • 8 Polotsky VY, Li J, Punjabi NM. et al. Intermittent hypoxia increases insulin resistance in genetically obese mice. J Physiol 2003; Oct 1 552 (Suppl. 01) 253-264.
  • 9 Braun B, Rock PB, Zamudio S. et al. Women at altitude: short-term exposure to hypoxia and/or alpha(1)-adrenergic blockade reduces insulin sensitivity. J Appl Physiol (1985) 2001; Aug; 91 (02) 623-631.
  • 10 Larsen JJ, Hansen JM, Olsen NV, Galbo H, Dela F. The effect of altitude hypoxia on glucose homeostasis in men. J Physiol 1997; 504 (Suppl. 01) 241-249.
  • 11 Louis M, Punjabi NM. Effects of acute intermittent hypoxia on glucose metabolism in awake healthy volunteers. J Appl Physiol (1985) 2009; May; 106 (05) 1538-1544.
  • 12 Gottlieb DJ, Punjabi NM, Newman AB, Resnick HE, Redline S, Baldwin CM. et al. Association of sleep time with diabetes mellitus and impaired glucose tolerance. Arch Int Med 2005; 165 (08) 863-867.
  • 13 Liu R, Zee PC, Chervin RD, Arguelles LM, Birne J, Zhang S. et al. Short sleep duration is associated with insulin resistance independent of adiposity in Chinese adult twins. Sleep Med 2011; Oct; 12 (09) 914-919.
  • 14 Lou P, Chen P, Zhang L. et al. Relation of sleep quality and sleep duration to type 2 diabetes: a population-based cross-sectional survey. BMJ Open. 2012 2. (4).
  • 15 Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet 1999; 354 (9188) 1435-1439.
  • 16 Stamatakis KA, Punjabi NM. Effects of sleep fragmentation on glucose metabolism in normal subjects. Chest 2010; Jan; 137 (01) 95-101.
  • 17 Somers VK, Mark AL, Zavala DC, Abboud FM. Contrasting effects of hypoxia and hypercapnia on ventilation and sympathetic activity in humans. J Appl Physiol (1985) 1989; Nov; 67 (05) 2101-2106.
  • 18 Somers VK, Mark AL, Zavala DC, Abboud FM. Influence of ventilation and hypocapnia on sympathetic nerve responses to hypoxia in normal humans. J Appl Physiol (1985) 1989; Nov; 67 (05) 2095-2100.
  • 19 Avogaro A, Toffolo G, Valerio A, Cobelli C. Epinephrine exerts opposite effects on peripheral glucose disposal and glucose-stimulated insulin secretion. A stable label intravenous glucose tolerance test minimal model study. Diabetes 1996; Oct; 45 (10) 1373-1378.
  • 20 Loredo JS, Ziegler MG, Ancoli-Israel S, Clausen JL, Dimsdale JE. Relationship of arousals from sleep to sympathetic nervous system activity and BP in obstructive sleep apnea. Chest 1999; Sep; 116 (03) 655-659.
  • 21 Aurora RN, Punjabi NM. Sleep Apnea and Metabolic Dysfunction: Cause or Co-Relation?. Sleep Med Clin 2007; 2 (02) 237-250.
  • 22 Lechin F, van der Dijs B. Central nervous system circuitry involved in the hyperinsulinism syndrome. Neuroendocrinology 2006; 84 (04) 222-234.
  • 23 Raz I, Katz A, Spencer MK. Epinephrine inhibits insulin-mediated glycogenesis but enhances glycolysis in human skeletal muscle. Am J Physiol 1991; Mar; 260 (03) (Suppl. 01) E430-435.
  • 24 Lavie L. Oxidative stress inflammation and endothelial dysfunction in obstructive sleep apnea. Front Biosci (Elite Ed) 2012; 4: 1391-1403.
  • 25 Westhoff M, Litterst P. Obstruktive Schlafapnoe und oxidativer Stress. Pneumologie 2012; Oct; 66 (10) 610-615.
  • 26 Leal Vde O, Mafra D. Adipokines in obesity. Clin Chim Acta 2013; 419: 87-94.
  • 27 Mantzoros CS, Magkos F, Brinkoetter M. et al. Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab 2011; 301 (04) E567-584.
  • 28 Polotsky M, Elsayed-Ahmed AS, Pichard L. et al. Effects of leptin and obesity on the upper airway function. J Appl Physiol 1985; May; 112 (10) 1637-1643.
  • 29 Harsch IA, Hahn EG, Lohmann T, Ficker JH. Respiratorische Effekte von Leptin. Deutsche medizinische Wochenschrift (1946) 2002; Jul 12; 127 (28–29): 1537-1540.
  • 30 Harsch IA, Konturek PC, Koebnick C. et al. Leptin and ghrelin levels in patients with obstructive sleep apnoea: effect of CPAP treatment. Eur Respir J 2003; Aug; 22 (02) 251-257.
  • 31 Shehzad A, Iqbal W, Shehzad O, Lee YS. Adiponectin: regulation of its production and its role in human diseases. Hormones (Athens) 2012; 11 (01) 8-20.
  • 32 Masserini B, Morpurgo PS, Donadio F. et al. Reduced levels of adiponectin in sleep apnea syndrome. J Endocrinol Invest 2006; 29 (08) 700-705.
  • 33 Wolk R, Svatikova A, Nelson CA. et al. Plasma levels of adiponectin, a novel adipocyte-derived hormone, in sleep apnea. Obesity research 2005; 13 (01) 186-190.
  • 34 Zhang XL, Yin KS, Wang H, Su S. Serum adiponectin levels in adult male patients with obstructive sleep apnea hypopnea syndrome. Respiration; international review of thoracic diseases 2006; 73 (01) 73-77.
  • 35 Zhang XF, Huang HP, Ding WX, Ding N, Lu G, Liu JN. et al. Adiponectin protects the genioglossus of rats against chronic intermittent hypoxia-induced injury via inhibition of endoplasmic reticulum stress. Chin Med J (Engl) 2013; 126 (17) 3270-3275.
  • 36 Utzschneider KM, Carr DB, Tong J. et al. Resistin is not associated with insulin sensitivity or the metabolic syndrome in humans. Diabetologia 2005; Nov; 48 (11) 2330-2333.
  • 37 Richalet JP, Letournel M, Souberbielle JC. Effects of high-altitude hypoxia on the hormonal response to hypothalamic factors. Am J Physiol Regul Integr Comp Physiol 2010; 299 (06) R1685-1692.
  • 38 Golbidi S, Badran M, Ayas N, Laher I. Cardiovascular consequences of sleep apnea. Lung 2012; 190 (02) 113-132.
  • 39 Harsch IA, Schahin SP, Radespiel-Troger M, Weintz O, Jahreiss H, Fuchs FS. et al. Continuous positive airway pressure treatment rapidly improves insulin sensitivity in patients with obstructive sleep apnea syndrome. Am J Respiratory and Critical Care Medicine 2004; 169 (02) 156-162.
  • 40 Pour Schahin SNT, Dittel C, Fuchs FS. et al. Long-term improvement of insulin sensitivity during CPAP therapy in the obstructive sleep apnoea syndrome. Med Sci Monit 2008; 14 (03) CR117-21.
  • 41 Yang D, Liu Z, Yang H, Luo Q. Effects of continuous positive airway pressure on glycemic control and insulin resistance in patients with obstructive sleep apnea: a meta-analysis. Sleep Breath 2013; Mar; 17 (01) 33-38.
  • 42 Sharma SK, Agrawal S, Damodaran D. et al. CPAP for the metabolic syndrome in patients with obstructive sleep apnea. NEJM 2011; 365 (24) 2277-2286.
  • 43 Hecht L, Mohler R, Meyer G. Effects of CPAP-respiration on markers of glucose metabolism in patients with obstructive sleep apnoea syndrome: a systematic review and meta-analysis. Ger Med Sci 2011; 9 Doc 20.
  • 44 Heffner JE, Rozenfeld Y, Kai M, Stephens EA, Brown LK. Prevalence of diagnosed sleep apnea among patients with type 2 diabetes in primary care. Chest 2012; Jun; 141 (06) 1414-1421.
  • 45 Hein MS, Schlenker EH, Patel KP. Altered control of ventilation in streptozotocin-induced diabetic rats. Proc Soc Exp Biol Med 1994; Nov; 207 (02) 213-219.
  • 46 Ficker JH, Dertinger SH, Siegfried W, Konig HJ, Pentz M, Sailer D. et al. Obstructive sleep apnoea and diabetes mellitus: the role of cardiovascular autonomic neuropathy. Eur Respir J 1998; Jan; 11 (01) 14-19.
  • 47 Lecube A, Sampol G, Lloberes P, Romero O, Mesa J, Hernandez C. et al. Diabetes is an independent risk factor for severe nocturnal hypoxemia in obese patients. A case-control study. PLoS One 2009; 4 (03) e4692.
  • 48 Bottini P, Redolfi S, Dottorini ML, Tantucci C. Autonomic neuropathy increases the risk of obstructive sleep apnea in obese diabetics. Respiration; international review of thoracic diseases 2008; 75 (03) 265-271.