Schlaf 2017; 06(03): 152-156
DOI: 10.1055/s-0038-1626176
Review
Schattauer GmbH

PaCO2 als Parameter zur Steuerung der Beatmung

Primäre oder sekundäre Größe?
DIETER KÖHLER
1   ehem. ärztlicher Direktor Krankenhaus Kloster Grafschaft Winkhausen Auf dem Kamp 11 57392 Schmallenberg, Email: hdieter.koehler@t-online.de
,
DOMINIC DELLWEG
2   Fachkrankenhaus Kloster Grafschaft GmbH Annostr. 1 57392 Schmallenberg, Email: d.dellweg@fkkg.de
› Author Affiliations
Further Information

Publication History

Publication Date:
12 February 2018 (online)

Eine Hyperkapnie wird praktisch immer durch eine Minderbeatmung (Hypoventilation) im Vergleich zum Bedarf verursacht. Ursache ist zu über 95 % eine über den physiologischen Grenzwert hinaus belastete Atempumpe. Dabei ist in fast allen Fällen diese Hypoventilation ein sinnvoller Mechanismus, um ein lebensbedrohliches Versagen der Atempumpe zu verhindern. Die primäre Zielgröße zur klinischen Bewertung der Hyperkapnie ist der Sauerstoffverbrauch der Atemmuskulatur (oxygen cost of breathing, OCB). Anhand der Langzeitsauerstofftherapie (LTOT) und der nicht invasiven Beatmung (NIV) wird gezeigt, dass jeweils die OCB reduziert wird wobei sich bei der LTOT die Hyperkapnie erhöht und bei der NIV vermindert.

 
  • Literatur

  • 1 Köhler D. Von Hexenverfolgung und Hypothesenverlust. Dtsch Med Wochenschr 2015; 140: 1894-1897.
  • 2 Petersson J, Glenny RW. Gas exchange and ventilation-perfusion relationships in the lung. Eur Respir J 2014; 44 (04) 1023-1041.
  • 3 Bégin P, Grassino A. Inspiratory muscle dysfunction and chronic hypercapnia in chronic obstructive pulmonary disease. Am Rev Respir Dis 1991; 143 (5 Pt1) 905-912.
  • 4 Roussos C, Koutsoukou A. Respiratory failure. Eur Respir J Suppl. 2003; Nov; 47 3s-14s. Review.
  • 5 Topeli A, Laghi F, Tobin MJ. The voluntary drive to breathe is not decreased in hypercapnic patients with severe COPD,. Eur Respir J 2001; 18 (01) 53-60.
  • 6 Köhler D. Analogien zwischen Herz- und Atemmuskelinsuffienz. Dtsch Med Wochenschr 2009; 134: 147-153.
  • 7 Meissner HH, Franklin C. Extreme hypercapnia in a fully alert patient. Chest 1992; 102 (04) 1298-1299.
  • 8 Potkin RT, Swenson ER. Resuscitation from severe acute hypercapnia. Determinants of tolerance and survival. Chest 1992; 102 (06) 1742-1745. Review.
  • 9 Schönhofer B, Köhler D. Hyperkapnie. Intensivmed 1997; 34: 501-512.
  • 10 Grahman GR, Hill DW, Nunn JF. ‚Supercarbia‘ in the anaesthetized dog. Nature 1959; 184 (Suppl. 14) 1071-1072.
  • 11 Xu Y, Cohen Y, Litt L, Chang LH, James TL. Tolerance of low cerebral intracellular pH in rats during hyperbaric hypercapnia. Stroke 1991; 22 (10) 1303-1308.
  • 12 Martoft L, Stødkilde-Jørgensen H, Forslid A, Pedersen HD, Jørgensen PF. CO2 induced acute respiratory acidosis and brain tissue intracellular pH: a 31P NMR study in swine. Lab Anim 2003; 37 (03) 241-248.
  • 13 Barranco MJ, Cortijo J, Ciscar MA, Ramón M, Juan G. [Effects of CO2 on the rat diaphragm in vitro]. Arch Bronconeumol 1994; 30 (09) 445-448.
  • 14 Ferguson GT. Effects of oxygenation and hypercapnia on diaphragmatic function and central drive during respiratory failure. J Appl Physiol 1995; 78 (05) 1764-1771.
  • 15 Rafferty GF, Lou Harris M, Polkey MI, Greenough A, Moxham J. Effect of hypercapnia on maximal voluntary ventilation and diaphragm fatigue in normal humans. Am J Respir Crit Care Med 1999; 160 (5 Pt 1) 1567-1571.
  • 16 Field S, Kelly SM, Macklem PT. The oxygen cost of breathing in patients with cardiorespiratory disease. Am Rev Respir Dis 1982; 126 (01) 9-13.
  • 17 Harpin RP, Baker JP, Downer JP, Whitwell J, Gallacher WN. Correlation of the oxygen cost of breathing and length of weaning from mechanical ventilation. Crit Care Med 1987; 15 (09) 807-802.
  • 18 McDonald NJ, Lavelle P, Gallacher WN, Harpin RP. Use of the oxygen cost of breathing as an index of weaning ability from mechanical ventilation. Intensive Care Med 1988; 14 (01) 50-54.
  • 19 Macklem PT, Cohen C, Zagelbaum G, Roussos C. The pathophysiology of inspiratory muscle fatigue. Ciba Found Symp 1981; 82: 249-263.
  • 20 Rochester DF. Measurement of diaphragmatic blood flow and oxygen consumption in the dog by the Kety-Schmidt technique. J Clin Invest 1974; 53 (05) 1216-1225.
  • 21 Viires N, Sillye G, Aubier M, Rassidakis A, Roussos C. Regional blood flow distribution in dog during induced hypotension and low cardiac output. Spontaneous breathing versus artificial ventilation. J Clin Invest 1983; 72 (03) 935-947.
  • 22 Aida A, Miyamoto K, Nishimura M, Aiba M, Kira S, Kawakami Y. Prognostic value of hypercapnia in patients with chronic respiratory failure during long-term oxygen therapy. Am J Respir Crit Care Med 1998; 158 (01) 188-193.
  • 23 Chailleux E, Fauroux B, Binet F, Dautzenberg B, Polu JM. Predictors of survival in patients receiving domiciliary oxygen therapy or mechanical ventilation. A 10-year analysis of ANTADIR Observatory. Chest 1996; 109 (03) 741-749.
  • 24 Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive lung disease: a clinical trial. Nocturnal Oxygen Therapy Trial Group. Ann Intern Med 1980; 93: 391-398.
  • 25 Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Report of the Medical Research Council Working Party. Lancet 1981; 28: 681-686.
  • 26 Köhler D, Haidl P. Sauerstoff in der Medizin. Pneumologie 2011; 65 (01) 25-35
  • 27 Leggett RJ, Flenley DC. Portable oxygen and exercise tolerance in patients with chronic hypoxic cor pulmonale. Br Med J 1977; 2 (6079) 84-86.
  • 28 Scott GC, Hinson JM, Scott RP, Quigley PR, Christopher KL, Metzler M. The effects of transtracheal gas delivery on central inspiratory neuromuscular drive. Chest 1993; 104 (04) 1199-1202.
  • 29 Dellweg D, Barchfeld T, Klauke M, Eiger G. Respiratory muscle unloading during auto-adaptive non-invasive ventilation. Respir Med 2009; 103 (11) 1706-1712.
  • 30 Schönhofer B, Sonneborn M, Haidl P, Böhrer H, Köhler D. Comparison of two different modes for noninvasive mechanical ventilation in chronic respiratory failure: volume versus pressure controlled device. Eur Respir J 1997; 10 (01) 184-191.
  • 31 Windisch W, Kostić S, Dreher M, Virchow Jr JC, Sorichter S. Outcome of patients with stable COPD receiving controlled noninvasive positive pressure ventilation aimed at a maximal reduction of Pa(CO2). Chest 2005; 128 (02) 657-662.
  • 32 Blankenburg T, Roloff D, Schädlich S, Crieé CP, Schütte W. Rekompensation von schwerem hyperkapnischem Versagen bei Patienten mit COPD unter 4 Wochen intermittierender nicht invasiver Heimbeatmung. Pneumologie 2008; 62 (03) 126-131.
  • 33 Schönhofer B, Ardes P, Geibel M, Köhler D, Jones PW. Evaluation of a movement detector to measure daily activity in patients with chronic lung disease. Eur Respir J 1997; 10 (12) 2814-2819.
  • 34 Köhnlein T, Windisch W, Köhler D. et al. Non-invasive positive pressure ventilation for the treatment of severe stable chronic obstructive pulmonary disease: a prospective, multicentre, randomised, controlled clinical trial. Lancet Respir Med 2014; 2: 698-705.