Nervenheilkunde 2011; 30(11): 10-11
DOI: 10.1055/s-0038-1628452
Übersichtsartikel
Schattauer GmbH

Ruhezustand bei Depression

M. Walter
Further Information

Publication History

Publication Date:
22 January 2018 (online)

 

 
  • Literatur

  • 1 Altamura C. et al. Plasma concentrations of excitatory amino acids, serine, glycine, taurine and histidine in major depression. Eur Neuropsychopharmacol 1995; 05 Suppl: 71-5.
  • 2 Altshuler LL. et al. Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disord 2010; 12 (05) 541-9.
  • 3 Amodio DM, Frith CD. Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci 2006; 07 (04) 268-77.
  • 4 Anand A. et al. Resting state corticolimbic connectivity abnormalities in unmedicated bipolar disorder and unipolar depression. Psychiatry Res 2009; 171 (03) 189-98.
  • 5 Anand A. et al. Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biol Psychiatry 2005; 57 (10) 1079-88.
  • 6 Aston C, Jiang L, Sokolov BP. Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Mol Psychiatry 2005; 10 (03) 309-22.
  • 7 Auer DP. et al. Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study. Biol Psychiatry 2000; 47 (04) 305-13.
  • 8 Banasr M, Duman RS. Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry 2008; 64 (10) 863-70.
  • 9 Bauer M. et al. Supraphysiological doses of levothyroxine alter regional cerebral metabolism and improve mood in bipolar depression. Mol Psychiatry 2005; 10 (05) 456-69.
  • 10 Benes FM. et al. Glutamate decarboxylase(65)-immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and bipolar brain. J Chem Neuroanat 2000; 20 3-4 259-69.
  • 11 Biswal B. et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995; 34 (04) 537-41.
  • 12 Brambilla P. et al. Magnetic resonance findings in bipolar disorder. Psychiatr Clin North Am 2005; 28 (02) 443-67.
  • 13 Brennan BP. et al. Rapid enhancement of glutamatergic neurotransmission in bipolar depression following treatment with riluzole. Neuropsychopharmacology 2010; 35 (03) 834-46.
  • 14 Bullmore E. et al. Generic aspects of complexity in brain imaging data and other biological systems. Neuroimage 2009; 47 (03) 1125-34.
  • 15 Capizzano AA. et al. In vivo proton magnetic resonance spectroscopy in patients with mood disorders: a technically oriented review. J Magn Reson Imaging 2007; 26 (06) 1378-89.
  • 16 Caspi A. et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 2003; 301 5631 386-9.
  • 17 Chang C, Glover GH. Variable-density spiral-in/out functional magnetic resonance imaging. Magn Reson Med 2011; 65 (05) 1287-96.
  • 18 Choudary PV. et al. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. PNAS USA 2005; 102 (43) 15653-8.
  • 19 Chowdhury GM. et al. Chronic riluzole treatment increases glucose metabolism in rat prefrontal cortex and hippocampus. J Cereb Blood Flow Metab 2008; 28 (12) 1892-7.
  • 20 Cotter D. et al. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 2001; 58 (06) 545-53.
  • 21 Craddock RC. et al. Disease state prediction from resting state functional connectivity. Magn Reson Med 2009; 62 (06) 1619-28.
  • 22 Czeh B. et al. Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology 2006; 31 (08) 1616-26.
  • 23 Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to behaviour. Brain 1995; 118 (Pt 1): 279-306.
  • 24 Drevets WC, Ongur D, Price JL. Neuroimaging abnormalities in the subgenual prefrontal cortex: implications for the pathophysiology of familial mood disorders. Mol Psychiatry 1998; 03 (03) 220-6: 190-1.
  • 25 Drevets WC. et al. Glucose metabolism in the amygdala in depression: relationship to diagnostic subtype and plasma cortisol levels. Pharmacol Biochem Behav 2002; 71 (03) 431-47.
  • 26 Drevets WC. et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997; 386 6627 824-7.
  • 27 Ende G, Demirakca T, Tost H. The biochemistry of dysfunctional emotions: proton MR spectroscopic findings in major depressive disorder. Prog Brain Res 2006; 156: 481-501.
  • 28 Gittins RA, Harrison PJ. A morphometric study of glia and neurons in the anterior cingulate cortex in mood disorder. J Affect Disord. 2011 E-pub ahead of print..
  • 29 Glitz DA, Manji HK, Moore GJ. Mood disorders: treatment-induced changes in brain neurochemistry and structure. Semin Clin Neuropsychiatry 2002; 07 (04) 269-80.
  • 30 Gonul AS. et al. The effect of antidepressant treatment on N-acetyl aspartate levels of medial frontal cortex in drug-free depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30 (01) 120-5.
  • 31 Gos T. et al. Demonstration of disturbed activity of orbitofrontal pyramidal neurons in depressed patients by the AgNOR staining method. J Affect Disord 2009; 118 1-3 131-8.
  • 32 Greicius MD. et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry 2007; 62 (05) 429-37.
  • 33 Grimm S. et al. Increased self-focus in major depressive disorder is related to neural abnormalities in subcortical-cortical midline structures. Hum Brain Mapp 2009; 30 (08) 2617-27.
  • 34 Guenther T. et al. Impact of EEG-vigilance on brain glucose uptake measured with [(18)F]FDG and PET in patients with depressive episode or mild cognitive impairment. Neuroimage 2011; 56 (01) 93-101.
  • 35 Gusnard DA, Raichle ME, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2001; 02 (10) 685-94.
  • 36 Hamidi M, Drevets WC, Price JL. Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. Biol Psychiatry 2004; 55 (06) 563-9.
  • 37 Hasler G. et al. Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 2007; 64 (02) 193-200.
  • 38 Hasler G. et al. Prefrontal cortical gamma-aminobutyric Acid levels in panic disorder determined by proton magnetic resonance spectroscopy. Biol Psychiatry 2009; 65 (03) 273-5.
  • 39 He BJ. et al. The temporal structures and functional significance of scale-free brain activity. Neuron 2010; 66 (03) 353-69.
  • 40 Hegerl U. et al. Are psychostimulants a treatment option in mania?. Pharmacopsychiatry 2009; 42 (05) 169-74.
  • 41 Hegerl U. et al. EEG-vigilance differences between patients with borderline personality disorder, patients with obsessive-compulsive disorder and healthy controls. Eur Arch Psychiatry Clin Neurosci 2008; 258 (03) 137-43.
  • 42 Honer WG. et al. Synaptic and plasticity-associated proteins in anterior frontal cortex in severe mental illness. Neuroscience 1999; 91 (04) 1247-55.
  • 43 Horn DI et al.. Glutamatergic and resting-state functional connectivity correlates of severity in major depression -the role of pregenual anterior cingulate cortex and anterior insula. Front Syst Neurosci. 2010: 4.
  • 44 Jung RE. et al. Biochemical markers of mood: a proton magnetic resonance spectroscopy study of normal human brain. Biol Psychiatry 2002; 51 (03) 224-9.
  • 45 Keedwell PA. et al. The neural correlates of anhedonia in major depressive disorder. Biol Psychiatry 2005; 58 (11) 843-53.
  • 46 Keilhoff G. et al. Cell proliferation is influenced by bulbectomy and normalized by imipramine treatment in a region-specific manner. Neuropsychopharmacology 2006; 31 (06) 1165-76.
  • 47 Kennedy SH. et al. Differences in brain glucose metabolism between responders to CBT and venlafaxine in a 16-week randomized controlled trial. Am J Psychiatry 2007; 164 (05) 778-88.
  • 48 Kunisato Y. et al. Modulation of default-mode network activity by acute tryptophan depletion is associated with mood change: a resting state functional magnetic resonance imaging study. Neurosci Res 2011; 69 (02) 129-34.
  • 49 Leistedt SJ. et al. Altered sleep brain functional connectivity in acutely depressed patients. Hum Brain Mapp 2009; 30 (07) 2207-19.
  • 50 Levine J. et al. Increased cerebrospinal fluid glutamine levels in depressed patients. Biol Psychiatry 2000; 47 (07) 586-93.
  • 51 Linkenkaer-Hansen K. et al. Breakdown of longrange temporal correlations in theta oscillations in patients with major depressive disorder. J Neurosci 2005; 25 (44) 10131-7.
  • 52 Liu Z. et al. Decreased regional homogeneity in insula and cerebellum: a resting-state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatry Res 2010; 182 (03) 211-5.
  • 53 Luborzewski A. et al. Metabolic alterations in the dorsolateral prefrontal cortex after treatment with high-frequency repetitive transcranial magnetic stimulation in patients with unipolar major depression. J Psychiatr Res 2007; 41 (07) 606-15.
  • 54 Lucassen PJ, Fuchs E, Czeh B. Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex. Biol Psychiatry 2004; 55 (08) 789-96.
  • 55 Lui S. et al. Resting-State Functional Connectivity in Treatment-Resistant Depression. Am J Psychiatry 2011; 168 (06) 642-8.
  • 56 Malhi GS. et al. Magnetic resonance spectroscopy and its applications in psychiatry. Aust N Z J Psychiatry 2002; 36 (01) 31-43.
  • 57 Manji HK. et al. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiatry 2003; 53 (08) 707-42.
  • 58 Mayberg HS. et al. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry 2000; 48 (08) 830-43.
  • 59 Michael N. et al. Metabolic changes within the left dorsolateral prefrontal cortex occurring with electroconvulsive therapy in patients with treatment resistant unipolar depression. Psychol Med 2003; 33 (07) 1277-84.
  • 60 Michael N. et al. Neurotrophic effects of electroconvulsive therapy: a proton magnetic resonance study of the left amygdalar region in patients with treatment-resistant depression. Neuropsychopharmacology 2003; 28 (04) 720-5.
  • 61 Miguel-Hidalgo JJ. et al. Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry 2000; 48 (08) 861-73.
  • 62 Mirza Y. et al. Reduced anterior cingulate cortex glutamatergic concentrations in childhood major depression. J Am Acad Child Adolesc Psychiatry 2004; 43 (03) 341-8.
  • 63 Möller HJ, Laux G, Kapfhammer HP. Psychiatrie, Psychosomatik, Psychotherapie: Allgemeine Psychiatrie. 4., Aufl. Berlin: Springer; 2010
  • 64 Murphy K. et al. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?. Neuroimage 2009; 44 (03) 893-905.
  • 65 Nofzinger EA. et al. Alterations in regional cerebral glucose metabolism across waking and non-rapid eye movement sleep in depression. Arch Gen Psychiatry 2005; 62 (04) 387-96.
  • 66 Nowak G, Ordway GA, Paul IA. Alterations in the N-methyl-D-aspartate (NMDA) receptor complex in the frontal cortex of suicide victims. Brain Res 1995; 675 1-2 157-64.
  • 67 Ongür D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. PNAS USA 1998; 95 (22) 13290-5.
  • 68 Peng DH. et al. Decreased regional homogeneity in major depression as revealed by resting-state functional magnetic resonance imaging. Chin Med J (Engl) 2011; 124 (03) 369-73.
  • 69 Petty F, Sherman AD. Plasma GABA levels in psychiatric illness. J Affect Disord 1984; 06 (02) 131-8.
  • 70 Pezawas L. et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 2005; 08 (06) 828-34.
  • 71 Pfleiderer B. et al. Effective electroconvulsive therapy reverses glutamate/glutamine deficit in the left anterior cingulum of unipolar depressed patients. Psychiatry Res 2003; 122 (03) 185-92.
  • 72 Raichle ME. et al. A default mode of brain function. PNAS USA 2001; 98 (02) 676-82.
  • 73 Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci 2006; 29: 449-76.
  • 74 Rajkowska G, Miguel-Hidalgo JJ. Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 2007; 06 (03) 219-33.
  • 75 Rigucci S. et al. Anatomical and functional correlates in major depressive disorder: The contribution of neuroimaging studies. World J Biol Psychiatry. 2009: 1-16.
  • 76 Rosenberg DR. et al. Reduced anterior cingulate glutamatergic concentrations in childhood OCD and major depression versus healthy controls. J Am Acad Child Adolesc Psychiatry 2004; 43 (09) 1146-53.
  • 77 Sanacora G. et al. Increased cortical GABA concentrations in depressed patients receiving ECT. Am J Psychiatry 2003; 160 (03) 577-9.
  • 78 Sanacora G. et al. Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. Am J Psychiatry 2002; 159 (04) 663-5.
  • 79 Schroeter ML. et al. Mood disorders are glial disorders: evidence from in vivo studies. Cardiovasc Psychiatry Neurol 2010; 201: 780645.
  • 80 Schroeter ML, Steiner J, Mueller K. Glial pathology is modified by age in mood disorders – A systematic meta-analysis of serum S100B in vivo studies. J Affect Disord. 2010 Dec 6. E-pub ahead of print.
  • 81 Seminowicz DA et al.. Limbic-frontal circuitry in major depression: a path modeling metanalysis. Neuroimage 2004; 22 (01) 409-18.
  • 82 Shulman RG, Rothman DL, Hyder F. A BOLD search for baseline. Neuroimage 2007; 36 (02) 277-81.
  • 83 Steiner J. et al. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res 2008; 42 (02) 151-7.
  • 84 Tkachev D. et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362 9386 798-805.
  • 85 Todtenkopf MS, Vincent Sl, Benes FM. A crossstudy meta-analysis and three-dimensional comparison of cell counting in the anterior cingulate cortex of schizophrenic and bipolar brain. Schizophr Res 2005; 73 (01) 79-89.
  • 86 Uranova NA. et al. Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res 2004; 67 2-3 269-75.
  • 87 Veer IM. et al. Whole brain resting-state analysis reveals decreased functional connectivity in major depression. Front Syst Neurosci. 2010: 4.
  • 88 Vostrikov VM, Uranova NA, Orlovskaya DD. Deficit of perineuronal oligodendrocytes in the prefrontal cortex in schizophrenia and mood disorders. Schizophr Res 2007; 94 1-3 273-80.
  • 89 Walter M. et al. Distinguishing specific sexual and general emotional effects in fMRI-subcortical and cortical arousal during erotic picture viewing. Neuroimage 2008; 40 (04) 1482-94.
  • 90 Walter M. et al. The relationship between aberrant neuronal activation in the pregenual anterior cingulate, altered glutamatergic metabolism, and anhedonia in major depression. Arch Gen Psychiatry 2009; 66 (05) 478-86.
  • 91 Wu QZ. et al. Abnormal regional spontaneous neural activity in treatment-refractory depression revealed by resting-state fMRI. Hum Brain Mapp. 2010 July 27, E-pub ahead of print..
  • 92 Yildiz-Yesiloglu A, Ankerst DP. Review of 1H magnetic resonance spectroscopy findings in major depressive disorder: a meta-analysis. Psychiatry Res 2006; 147 (01) 1-25.
  • 93 Yu C. et al. Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation. Neuroimage 2011; 54 (04) 2571-81.
  • 94 Yuksel C, Ongur D. Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol Psychiatry 2010; 68 (09) 785-94.
  • 95 Zarate CA. et al. A double-blind, placebo-controlled study of memantine in the treatment of major depression. Am J Psychiatry 2006; 163 (01) 153-5.
  • 96 Zhou Y. et al. Increased neural resources recruitment in the intrinsic organization in major depression. J Affect Disord 2010; 121 (03) 220-30.