Yearb Med Inform 2007; 16(01): 74-86
DOI: 10.1055/s-0038-1638529
Survey
Georg Thieme Verlag KG Stuttgart

Section 5: Decision Support, Knowledge Representation and Management: Free and Open Source Enabling Technologies for Patient-Centric, Guideline-Based Clinical Decision Support: A Survey

T. Y. Leong
1   Medical Computing Laboratory, School of Computing, National University of Singapore, Singapore
,
K. Kaiser
2   Institute of Software Technology and Interactive Systems, Vienna University of Technology, Austria
3   Department of Information and Knowledge Engineering, Danube University Krems, Austria
,
S. Miksch
2   Institute of Software Technology and Interactive Systems, Vienna University of Technology, Austria
› Author Affiliations
Part of this work is supported by “Fonds zur Förderung der wissenschaftlichen Forschung FWF” (Austrian Science Fund), grant L290N04.
Further Information

Correspondence to

Tze-Yun Leong, PhD
Medical Computing Laboratory
School of Computing
National University of Singapore Computing 1, Law Link
Singapore 117590

Publication History

Publication Date:
05 March 2018 (online)

 

Summary

Objectives

Guideline-based clinical decision support is an emerging paradigm to help reduce error, lower cost, and improve quality in evidence-based medicine. The free and open source (FOS) approach is a promising alternative for delivering cost-effective information technology (IT) solutions in health care. In this paper, we survey the current FOS enabling technologies for patient-centric, guideline-based care, and discuss the current trends and future directions of their role in clinical decision support.

Methods

We searched PubMed, major biomedical informatics websites, and the web in general for papers and links related to FOS health care IT systems. We also relied on our background and knowledge for specific subtopics. We focused on the functionalities of guideline modeling tools, and briefly examined the supporting technologies for terminology, data exchange and electronic health record (EHR) standards.

Results

To effectively support patient-centric, guideline-based care, the computerized guidelines and protocols need to be integrated with existing clinical information systems or EHRs. Technologies that enable such integration should be accessible, interoperable, and scalable. A plethora of FOS tools and techniques for supporting different knowledge management and quality assurance tasks involved are available. Many challenges, however, remain in their implementation.

Conclusions

There are active and growing trends of deploying FOS enabling technologies for integrating clinical guidelines, protocols, and pathways into the main care processes. The continuing development and maturation of such technologies are likely to make increasingly significant contributions to patient-centric, guidelinebased clinical decision support.


#

 


#
  • References

  • 1 Field MJ, Lohr KN. editors. Guidelines for Clinical Practice: From Development to Use. Washington, DC: National Academy Press; 1992
  • 2 Timmermans S, Mauck A. The Promises And Pitfalls Of Evidence-Based Medicine. Health Aff 2005; 24 (01) 18-28.
  • 3 Clancy CM, Cronin K. Evidence-Based Decision Making: Global Evidence, Local Decisions. Health Aff 2005; 24 (01) 151-62.
  • 4 Peleg M, Tu SW, Bury J, Ciccarese P, Fox J, Greenes RA. et al. Comparing Computer-Interpretable Guideline Models: A Case-Study Approach. J Am Med Inform Assoc 2003; 10 (01) 52-68.
  • 5 Wang D, Peleg M, Tu S, Boxwala A, Greenes R, Patel V. Representation primitives, process models and patient data in compueter-interpretable clinical practice guidelines: A literature review of guideline representation methods. Int J Med Inform 2002; 68 1-3 59-70.
  • 6 de Clercq PA, Blomb JA, Korsten HHM, Hasman A. Approaches for creating computer-interpretable guidelines that facilitate decision support. Artif Intell Med 2004; 31: 1-27.
  • 7 Sonnenberg FA, Hagerty CG. Computer-interpretable clinical practice guidelines: Where are we and where are we going?. In: Kulikowski C, Haux R. editors. IMIAYearbook of Medical Informatics 2006. Methods Inf Med 2006; 45 Suppl 1: 145-58.
  • 8 Riehle D. The Economic Motivation of Open Source Software: Stakeholder Perspectives. IEEE Computer 2007; April: 25-32.
  • 9 Goulde M, Brown E. Open Source Software: A Primer for Health Care Leaders. Report by Forrester Research. 2006 [cited March 2007]; http://www.chcf.org/topics/view.cfm?itemID=119091.
  • 10 Preimesberger C. New Software Predicts Spread of Infectious Diseases. eWeek 2007 June 12, 2007 [cited 2007 June 14]. http://www.eweek.com/article2/0,1895,2145254,00.asp.
  • 11 The Free Software Definition. 2005 12 February [cited 2007 May]. http://www.fsf.org/licensing/essays/free-sw.html.
  • 12 Kalra D, Forslund D. Open source health systems. oIn. Demetricades JE, Kolodner RM, Christoperson GA. editors. Person-Centred Health Records: toward HealthePeople. New York, USA: Springer; 2005: 169-85.
  • 13 Open Collaboration Principles. 2005 December [cited 2007 April]; http://www-304.ibm.com/jct09002c/university/scholars/downloads/OpenCollaborationPrinciples_December2005.pdf.
  • 14 Understand the emerging innovation landscape Enabling university and industry research. 2006 [cited 2007 April]; http://www-304.ibm.com/jct09002c/university/scholars/downloads/Open_Collaboration_Principles_overview.pdf.
  • 15 OHIP Open Health Information Project. 2007 March [cited 2007 April]; http://osuosl.org/node/59.
  • 16 Linuxworld Healthcare Day. 2006 [cited 2007 June]; http://www.linuxworldexpo.com/live/12/ events/12SFO06A/conference/CC730223.
  • 17 Wikipedia The Free Encyclopedia. List of Open Source Healthcare Software. 2007 June 11 [cited 2007 June]; Available from: http://en.wikipedia.org/wiki/List_of_open_source_healthcare.
  • 18 OpenClinical. Open Source methods, tools and applications. 2006 November 21 [cited 2007 June]; http://www.openclinical.org/opensourceDLD.html.
  • 19 LinuxMedNews. 2007 [cited 2007 June]; http://www.linuxmednews.org/.
  • 20 Berlin A, Sorani M, Sim I. A taxonomic description of computer-based clinical decision support systems. J Biomed Inform 2006; 39 (06) 656-67.
  • 21 Hammond WE, Cimino JJ. Standards in Biomedical Informatics. In: Shortliffe EH, Cimino JJ. editors. Biomedical Informatics: Computer Applications in Health Care and Biomedicine. 3rd ed. Springer; 2006: 698-736.
  • 22 Coté R, Rothwell D, Palotay J, Beckett R, Brochu L. editors. The Systematized Nomenclature of Medicine. Northfield, IL: College of American Pathologists: SNOMED International; 1993
  • 23 Huff SM, Rocha RA, McDonald CJ, De Moor GJ, Fiers T, Bidgood WDJ. et al. Development of the Logical Observation Identifier Names and Codes (LOINC) vocabulary. J Am Med Inform Assoc 1998; 05 (03) 276-92.
  • 24 Humphreys BL, Lindberg DAB. The UMLS project: making the conceptual connection between users and the information they need. Bull Med Libr Assoc 1993; 81 (02) 170-8.
  • 25 Rector AL, Nowlan WA. The GALEN Project. Computer Methods and Programs in Biomedicine, Special Issue on the AIM Projects. 1994; 45 (1-2): 75-8.
  • 26 Browne AC, Divita G, Aronson AR, McCray AT. UMLS Language and Vocabulary Tools. In: Musen MA. editor. Proceedings of the 2003 AMIAAnnual Symposium. Washington, DC: 2003: 798.
  • 27 Bangalore A, Thorn KE, Tilley C, Peters L. The UMLS Knowledge Source Server:An Object Model For Delivering UMLS Data. In: Musen MA. editor. Proceedings of the 2003 AMIA Annual Symposium. Washington, DC: 2003: 51-55.
  • 28 Tolentino HD, Matters MD, Walop W, Law B, Tong W, Liu F. et al. A UMLS-based spell checker for natural language processing in vaccine safety. BMC Medical Informatics and Decision Making 2007. 2007 07. 03
  • 29 Shu J, Clifford G, Saeed M, Long W, Moody G, Szolovits P. et al. An Open-Source, Interactive Java-Based System for Rapid Encoding of Significant Events in the ICU Using the Unified Medical Language System. In: Computers in Cardiology. IEEE Computer Society Press; 2004: 197-200.
  • 30 Khan A, Griffith S, Moore C, Russell D, Rosario A, Bertolli J. Standardizing Laboratory Data by Mapping to LOINC. J Am Med Inform Assoc 2006; 13 (03) 353-5.
  • 31 Sun JY, Sun Y. A System for Automated Lexical Mapping. JAm Med InformAssoc 2006; 13 (03) 334-43.
  • 32 Vreeman DJ, McDonald CJ. Automated mapping of local radiology terms to LOINC. In: Friedman CP, Ash J, Tarczy-Hornoch P. editors. Proceedings of the 2005 AMIA Annual Symposium. Washington, DC: 2005: 769-73.
  • 33 Rector AL, Rogers JE, Zanstra PE, Haring Evd. OpenGALEN: Open Source Medical Terminology and Tools. In: Musen MA, editor. Proceedings of the 2003 AMIA Annual Symposium. Washington, DC: 2003
  • 34 van Harmelen F. Ontology mapping: a way out of the medical tower of Babel? [Keynote address at the 10th Conference on Artificial Intelligence in Medicine (AIME 05)]. Aberdeen, Scotland: IOS Press, Amsterdam, NL; 2005
  • 35 Stuckenschmidt H, Harmelen Fv, Serafini L, Bouquet P, Giunchiglia F. Using C-OWL for the Alignment and Merging of Medical Ontologies. In Hahn U. editor. First International Workshop on Formal Biomedical Knowledge Representation (KRMed’04); 2004 June. Whistler, Colorado: 2004: 8-101.
  • 36 Qamar R, Rector A. MoST: A System to Semantically Map Clinical Model Data to SNOMED-CT. Semantic Mining Conference on SNOMED 2006; 38-43.
  • 37 Qamar R, Rector A. Semantic Issues in Integrating Data from Different Models to Achieve Data Interoperability. In Kuhn KA, Warren JR, Leong TY. editors. MEDINFO 2007: Proceedings of the 12th World Congress on Medical Informatics. Brisbane, Australia: IOS Press, Amsterdam, NL; 2007. (To appear).
  • 38 Sundvall E, Nyström M, Petersson H, Åhlfeldt H. Interactive visualization and navigation of complex terminology systems, exemplified by SNOMEDCT. In: Hasman A, Haux R, van der Lei J, De Clercq Roger, France F. editors. The 20th International Congress of the European Federation for Medical Informatics, Studies in Health Technology and Informatics; 2006. Maastricht, The Netherlands: IOS Press; 2006: 851-6.
  • 39 Hripcsak G, Ludemann P, Pryor TA, Wigertz OB, Clayton PD. Rationale for the Arden Syntax. Comp and Biomed Res 1994; 27 (04) 291-324.
  • 40 Wikipedia The Free Encyclopedia. Health Level 7 Open Source Tools. 2007 June 11 [cited 2007 June]; Available from: http://en.wikipedia.org/wiki/HL7#Open_source_tools.
  • 41 Kalra D. Electronic Health Record Standards. In: Kulikowski C, Haux R. editors. IMIAYearbook of Medical Informatics 2006. Methods Inf Med. 2006. 45 Suppl 1: 136-44.
  • 42 Moner D, Maldonado JA, Bosca D, Fernandez JT, Angulo C, Crespo P. et al. Archetype-Based Semantic Integration and Standardization of Clinical Data. In: 28th Annual International Conference of the IEEE (EMBS ‘06): Engineering in Medicine and Biology Society 2006; 5141-4.
  • 43 Smith S, Kaufman J, Jiang K, Davis M, Onvural M, Oprencak I. Eclipse Open Healthcare Framework. In: The Server-Side Eclipse Symposium at the 2007 European Eclipse Summit. Esslingen, Germany: 2007
  • 44 Introducing openEHR 2007. 2007 Jan [cited 2007 April]; Available from http://svn.openehr.org/specification/TRUNK/publishing/openEHR/introducing_openEHR.pdf.
  • 45 Garde S, Knaup P, Hovenga E, Heard S. Towards Semantic Interoperability for Electronic Health Records: Domain Knowledge Governance for openEHRArchetypes. Methods Inf Med. 2007 46. (01)
  • 46 McCallum G. EGADSS: A Clinical Decision Support System for use in a Service-oriented Architecture [Master’s Thesis]. University of Victoria: 2006
  • 47 de Clercq PA, Blom JA, Hasman A, Korsten HHM. Design and Implementation of a Framework to Support the Development of Clinical Guidelines. Int J Med Inform 2001; 64 2-3 285-318.
  • 48 Gennari JH, Musen MA, Fergerson RW, Grosso WE, Crubézy M, Eriksson H. et al. The Evolution of Protégé: An Environment for Knowledge-based Systems Development. Int J Hum Comput Stud 2003; 58 (01) 89-123.
  • 49 Chaudhri VK, Farquhar A, Fikes R, Karp PD, Rice JP. OKBC: a programmatic foundation for knowledge base interoperability. In: AAAI ‘98/IAAI ‘98: Proceedings of the fifteenth national/tenth conference on Artificial intelligence/Innovative applications of artificial intelligence. Menlo Park, CA, USA: 1998: 600-7.
  • 50 Musen MA. Domain Ontologies in Software Engineering: Use of Protégé with the EON Architecture. Methods Inf Med 1998; 37: 540-50.
  • 51 Tu SW, Musen MA. Modeling data and knowledge in the EON guideline architecture. In: Patel V, Rogers R, Haux R. editors. MEDINFO 2001: Proceedings of the 10th World Congress on Medical Informatics. IOS Press; Amsterdam, NL: 2001: 280-84.
  • 52 Boxwala AA, Peleg M, Tu SW, Ogunyemi O, Zeng Q, Wang D. et al. GLIF3: A Representation Format for Sharable Computer-interpretable Clinical Practice Guidelines. J Biomed Inform 2004; 37 (03) 147-61.
  • 53 Skonetzki S, Gausepohl HJ, van der Haak M, Knaebel S, Linderkamp O, Wetter T. HELEN, a modular framework for representing and implementing clinical practice guidelines. Methods Inf Med 2004; 43 (04) 413-26.
  • 54 Campbell JR, Tu SW, Mansfield JG, Boyer JI, McClay J, Parker C. et al. The SAGE Guideline Model: A Knowledge Representation Framework for Encoding Interoperable Clinical Practice Guidelines. In: Musen MA. editor. Proceedings of the 2003 AMIA Annual Symposium. Washington, DC: 2003
  • 55 Purves IN, Sugden B, Booth N, Sowerby M. The PRODIGY Project — the Iterative Development of the Release One Model. In: Lorenzi NM. editor. Proceedings of the 1999 AMIA Annual Symposium. Washington DC: 1999: 359-63.
  • 56 Fox J, Johns N, Rahmanzadeh A. Disseminating Medical Knowledge:The PROforma Approach. Artif Intell Med 1998; 14: 157-81.
  • 57 Kosara R, Miksch S. Metaphors of Movement: A Visualization and User Interface for Time-Oriented, Skeletal Plans. Artificial Intelligence in Medicine, Special Issue: Information Visualization in Medicine 2001; 22 (02) 111-31.
  • 58 Shahar Y, Miksch S, Johnson P. The Asgaard Project: A Task-Specific Framework for the Application and Critiquing of Time-Oriented Clinical Guidelines. Artif Intell Med 1998; 14: 29-51.
  • 59 Steele R, Fox J. Tallis PROforma Primer – Introduction to PROforma Language and Software with Worked Examples. London, UK: Advanced Computation Laboratory, Cancer Research; 2002
  • 60 Fox J, Das S. Safe and Sound: Artificial Intelligence in Hazardous Applications. AAAI Press, Menlo Park, CA, and MIT Press; Cambridge, Mass: 2000
  • 61 Sutton DR, Fox J. The Syntax and Semantics of the PROforma Guideline Modeling Language. J Am Med Inform Assoc 2003; 10 (05) 433-43.
  • 62 Advanced Computation Laboratory. Tallis Composer User Interface. 2006 Sep 13 [cited 2007 May 20]; Available from: http://www.acl.icnet.uk/lab/tallis/Composer_User_Interface01.htm.
  • 63 Polvani K-A, Agrawal A, Karras B, Deshpande A, Shiffman R. GEM Cutter Manual. New Haven, CT: 2000
  • 64 Shiffman RN, Karras BT, Agrawal A, Chen R, Marenco L, Nath S. GEM: A Proposal for a More Comprehensive Guideline Document Model Using XML. J Am Med Inform Assoc 2000; 07 (05) 488-98.
  • 65 Yale Center Medical Informatics. GEM Cutter: Screenshot. [cited 2005 Oct. 20]; Available from: http://gem.med.yale.edu/GEM_Cutter/gem_cutter.htm.
  • 66 Shiffman RN, Michel G, Essaihi A, Thornquist E. Bridging the Guideline Implementation Gap: A Systematic, Document-Centered Approach to Guideline Implementation. J Am Med Inform Assoc 2004; 11 (05) 418-26.
  • 67 Votruba P, Miksch S, Kosara R. Facilitating Knowledge Maintenance of Clinical Guidelines and Protocols. In: Fieschi M, Coiera E, Li Y-CJ. editors. MEDINFO 2004: Proceedings of the 11th World Congress on Medical Informatics. IOS Press; Amsterdam, NL: 2004: 57-61.
  • 68 Seyfang A, Miksch S, Marcos M, Wittenberg J, Polo-Conde C, Rosenbrand K. Bridging the Gap between Informal and Formal Guideline Representations. In: Brewka G, Coradeschi S, Perini A, Traverso P. editors. Proceedings of the 17th European Conference on Artificial Intelligence (ECAI-2006). Riva del Garda, Italy; IOS Press; Amsterdam, NL: 2006: 447-51.
  • 69 Kaiser K, Akkaya C, Miksch S. How Can Information Extraction Ease Formalizing Treatment Processes in Clinical Practice Guidelines? A Method and Its Evaluation. Artif Intell Med 2007; 39 (02) 151-63.
  • 70 Kaiser K, Miksch S. Modeling Treatment Processes Using Information Extraction. In: Yoshida H, Jain A, Ichalkaranje A, Jain LC, Ichalkaranje N. editors. Advanced Computational Intelligence Paradigms in Healthcare - 1. Springer Verlag: 2007: 189-224.
  • 71 Taboada M, Des J, MartÌnez D, Mira J. A Study of Applying Knowledge Modelling to Evidence-based Guidelines. In: ten Teije A, Lucas P, Miksch S. editors. Proceedings of the Workshop AI techniques in healthcare: evidence-based guidelines and protocols (at ECAI’06). 2006
  • 72 Ruzicka M, Svátek V. Mark-up Based Analysis of Narrative Guidelines with the Stepper Tool. In: Kaiser K, Miksch S, Tu SW. editors. Computer-based Support for Clinical Guidelines and Protocols. Proceedings of the Symposium on Computerized Guidelines and Protocols (CGP 2004). IOS Press; Amsterdam, NL: 2004: 132-6.
  • 73 Svátek V, Ruzicka M. Step-By-Step Mark-Up of Medical Guideline Documents. International Journal of Medical Informatics 2003; 70 2-3 319-35.
  • 74 Shahar Y, Young O, Shalom E, Galperin M, Mayaffit A, Moskovitch R. et al. A framework for a distributed, hybrid, multiple-ontology clinical-guideline library, and automated guideline-support tools. J Biomed Inform 2004; 37 (05) 325-44.
  • 75 Shalom E. Degel: Uruz Screenshot. 2006 [cited 2006 Sep 20]; http://medinfo.ise.bgu.ac.il/MedLab/ ResearchProjects/RP_Uruz3.htm.
  • 76 Musen MA. Preface: Protégé: community is everything. Int J Hum Comput Stud 2005; 62 (05) 545-52.
  • 77 Jenders RA, Sailors RM. Convergence on a standard for representing clinical guidelines: work in health level seven. In: Fieschi M, Coiera E, Li Y-CJ. editors. MEDINFO 2004: Proceedings of the 11th World Congress on Medical Informatics. IOS Press; Amsterdam, NL: 2004: 130-34.
  • 78 Sanders GD. Automated Creation of Clinical Practice-Guidelines from Decision Models. Stanford University; 1998
  • 79 Zhu AL, Leong TY. Automating dynamic decision model construction to support clinical practical guideline development. In: Heller B, Loffler M, Musen M, Stefanelli M. editors. Computer-Based Support for Clinical Guidelines and Protocols: Proceedings of EWGLP 2000. IOS Press; 2001: 133-148.
  • 80 Serban R, ten Teije A, van Harmelen F, Marcos M, Polo-Conde C. Extraction and use of linguistic patterns for modelling medical guidelines. Artificial Intelligence in Medicine 2007; 39 (02) 137-49.
  • 81 Zhu AL, Li J, Leong TY. Automated knowledge extraction for decision model construction: A data mining approach. In: Musen M. editor. Proceedings of the 2003 AMIAAnnual Symposium. Washington, DC: 2003: 758-62.

Correspondence to

Tze-Yun Leong, PhD
Medical Computing Laboratory
School of Computing
National University of Singapore Computing 1, Law Link
Singapore 117590

  • References

  • 1 Field MJ, Lohr KN. editors. Guidelines for Clinical Practice: From Development to Use. Washington, DC: National Academy Press; 1992
  • 2 Timmermans S, Mauck A. The Promises And Pitfalls Of Evidence-Based Medicine. Health Aff 2005; 24 (01) 18-28.
  • 3 Clancy CM, Cronin K. Evidence-Based Decision Making: Global Evidence, Local Decisions. Health Aff 2005; 24 (01) 151-62.
  • 4 Peleg M, Tu SW, Bury J, Ciccarese P, Fox J, Greenes RA. et al. Comparing Computer-Interpretable Guideline Models: A Case-Study Approach. J Am Med Inform Assoc 2003; 10 (01) 52-68.
  • 5 Wang D, Peleg M, Tu S, Boxwala A, Greenes R, Patel V. Representation primitives, process models and patient data in compueter-interpretable clinical practice guidelines: A literature review of guideline representation methods. Int J Med Inform 2002; 68 1-3 59-70.
  • 6 de Clercq PA, Blomb JA, Korsten HHM, Hasman A. Approaches for creating computer-interpretable guidelines that facilitate decision support. Artif Intell Med 2004; 31: 1-27.
  • 7 Sonnenberg FA, Hagerty CG. Computer-interpretable clinical practice guidelines: Where are we and where are we going?. In: Kulikowski C, Haux R. editors. IMIAYearbook of Medical Informatics 2006. Methods Inf Med 2006; 45 Suppl 1: 145-58.
  • 8 Riehle D. The Economic Motivation of Open Source Software: Stakeholder Perspectives. IEEE Computer 2007; April: 25-32.
  • 9 Goulde M, Brown E. Open Source Software: A Primer for Health Care Leaders. Report by Forrester Research. 2006 [cited March 2007]; http://www.chcf.org/topics/view.cfm?itemID=119091.
  • 10 Preimesberger C. New Software Predicts Spread of Infectious Diseases. eWeek 2007 June 12, 2007 [cited 2007 June 14]. http://www.eweek.com/article2/0,1895,2145254,00.asp.
  • 11 The Free Software Definition. 2005 12 February [cited 2007 May]. http://www.fsf.org/licensing/essays/free-sw.html.
  • 12 Kalra D, Forslund D. Open source health systems. oIn. Demetricades JE, Kolodner RM, Christoperson GA. editors. Person-Centred Health Records: toward HealthePeople. New York, USA: Springer; 2005: 169-85.
  • 13 Open Collaboration Principles. 2005 December [cited 2007 April]; http://www-304.ibm.com/jct09002c/university/scholars/downloads/OpenCollaborationPrinciples_December2005.pdf.
  • 14 Understand the emerging innovation landscape Enabling university and industry research. 2006 [cited 2007 April]; http://www-304.ibm.com/jct09002c/university/scholars/downloads/Open_Collaboration_Principles_overview.pdf.
  • 15 OHIP Open Health Information Project. 2007 March [cited 2007 April]; http://osuosl.org/node/59.
  • 16 Linuxworld Healthcare Day. 2006 [cited 2007 June]; http://www.linuxworldexpo.com/live/12/ events/12SFO06A/conference/CC730223.
  • 17 Wikipedia The Free Encyclopedia. List of Open Source Healthcare Software. 2007 June 11 [cited 2007 June]; Available from: http://en.wikipedia.org/wiki/List_of_open_source_healthcare.
  • 18 OpenClinical. Open Source methods, tools and applications. 2006 November 21 [cited 2007 June]; http://www.openclinical.org/opensourceDLD.html.
  • 19 LinuxMedNews. 2007 [cited 2007 June]; http://www.linuxmednews.org/.
  • 20 Berlin A, Sorani M, Sim I. A taxonomic description of computer-based clinical decision support systems. J Biomed Inform 2006; 39 (06) 656-67.
  • 21 Hammond WE, Cimino JJ. Standards in Biomedical Informatics. In: Shortliffe EH, Cimino JJ. editors. Biomedical Informatics: Computer Applications in Health Care and Biomedicine. 3rd ed. Springer; 2006: 698-736.
  • 22 Coté R, Rothwell D, Palotay J, Beckett R, Brochu L. editors. The Systematized Nomenclature of Medicine. Northfield, IL: College of American Pathologists: SNOMED International; 1993
  • 23 Huff SM, Rocha RA, McDonald CJ, De Moor GJ, Fiers T, Bidgood WDJ. et al. Development of the Logical Observation Identifier Names and Codes (LOINC) vocabulary. J Am Med Inform Assoc 1998; 05 (03) 276-92.
  • 24 Humphreys BL, Lindberg DAB. The UMLS project: making the conceptual connection between users and the information they need. Bull Med Libr Assoc 1993; 81 (02) 170-8.
  • 25 Rector AL, Nowlan WA. The GALEN Project. Computer Methods and Programs in Biomedicine, Special Issue on the AIM Projects. 1994; 45 (1-2): 75-8.
  • 26 Browne AC, Divita G, Aronson AR, McCray AT. UMLS Language and Vocabulary Tools. In: Musen MA. editor. Proceedings of the 2003 AMIAAnnual Symposium. Washington, DC: 2003: 798.
  • 27 Bangalore A, Thorn KE, Tilley C, Peters L. The UMLS Knowledge Source Server:An Object Model For Delivering UMLS Data. In: Musen MA. editor. Proceedings of the 2003 AMIA Annual Symposium. Washington, DC: 2003: 51-55.
  • 28 Tolentino HD, Matters MD, Walop W, Law B, Tong W, Liu F. et al. A UMLS-based spell checker for natural language processing in vaccine safety. BMC Medical Informatics and Decision Making 2007. 2007 07. 03
  • 29 Shu J, Clifford G, Saeed M, Long W, Moody G, Szolovits P. et al. An Open-Source, Interactive Java-Based System for Rapid Encoding of Significant Events in the ICU Using the Unified Medical Language System. In: Computers in Cardiology. IEEE Computer Society Press; 2004: 197-200.
  • 30 Khan A, Griffith S, Moore C, Russell D, Rosario A, Bertolli J. Standardizing Laboratory Data by Mapping to LOINC. J Am Med Inform Assoc 2006; 13 (03) 353-5.
  • 31 Sun JY, Sun Y. A System for Automated Lexical Mapping. JAm Med InformAssoc 2006; 13 (03) 334-43.
  • 32 Vreeman DJ, McDonald CJ. Automated mapping of local radiology terms to LOINC. In: Friedman CP, Ash J, Tarczy-Hornoch P. editors. Proceedings of the 2005 AMIA Annual Symposium. Washington, DC: 2005: 769-73.
  • 33 Rector AL, Rogers JE, Zanstra PE, Haring Evd. OpenGALEN: Open Source Medical Terminology and Tools. In: Musen MA, editor. Proceedings of the 2003 AMIA Annual Symposium. Washington, DC: 2003
  • 34 van Harmelen F. Ontology mapping: a way out of the medical tower of Babel? [Keynote address at the 10th Conference on Artificial Intelligence in Medicine (AIME 05)]. Aberdeen, Scotland: IOS Press, Amsterdam, NL; 2005
  • 35 Stuckenschmidt H, Harmelen Fv, Serafini L, Bouquet P, Giunchiglia F. Using C-OWL for the Alignment and Merging of Medical Ontologies. In Hahn U. editor. First International Workshop on Formal Biomedical Knowledge Representation (KRMed’04); 2004 June. Whistler, Colorado: 2004: 8-101.
  • 36 Qamar R, Rector A. MoST: A System to Semantically Map Clinical Model Data to SNOMED-CT. Semantic Mining Conference on SNOMED 2006; 38-43.
  • 37 Qamar R, Rector A. Semantic Issues in Integrating Data from Different Models to Achieve Data Interoperability. In Kuhn KA, Warren JR, Leong TY. editors. MEDINFO 2007: Proceedings of the 12th World Congress on Medical Informatics. Brisbane, Australia: IOS Press, Amsterdam, NL; 2007. (To appear).
  • 38 Sundvall E, Nyström M, Petersson H, Åhlfeldt H. Interactive visualization and navigation of complex terminology systems, exemplified by SNOMEDCT. In: Hasman A, Haux R, van der Lei J, De Clercq Roger, France F. editors. The 20th International Congress of the European Federation for Medical Informatics, Studies in Health Technology and Informatics; 2006. Maastricht, The Netherlands: IOS Press; 2006: 851-6.
  • 39 Hripcsak G, Ludemann P, Pryor TA, Wigertz OB, Clayton PD. Rationale for the Arden Syntax. Comp and Biomed Res 1994; 27 (04) 291-324.
  • 40 Wikipedia The Free Encyclopedia. Health Level 7 Open Source Tools. 2007 June 11 [cited 2007 June]; Available from: http://en.wikipedia.org/wiki/HL7#Open_source_tools.
  • 41 Kalra D. Electronic Health Record Standards. In: Kulikowski C, Haux R. editors. IMIAYearbook of Medical Informatics 2006. Methods Inf Med. 2006. 45 Suppl 1: 136-44.
  • 42 Moner D, Maldonado JA, Bosca D, Fernandez JT, Angulo C, Crespo P. et al. Archetype-Based Semantic Integration and Standardization of Clinical Data. In: 28th Annual International Conference of the IEEE (EMBS ‘06): Engineering in Medicine and Biology Society 2006; 5141-4.
  • 43 Smith S, Kaufman J, Jiang K, Davis M, Onvural M, Oprencak I. Eclipse Open Healthcare Framework. In: The Server-Side Eclipse Symposium at the 2007 European Eclipse Summit. Esslingen, Germany: 2007
  • 44 Introducing openEHR 2007. 2007 Jan [cited 2007 April]; Available from http://svn.openehr.org/specification/TRUNK/publishing/openEHR/introducing_openEHR.pdf.
  • 45 Garde S, Knaup P, Hovenga E, Heard S. Towards Semantic Interoperability for Electronic Health Records: Domain Knowledge Governance for openEHRArchetypes. Methods Inf Med. 2007 46. (01)
  • 46 McCallum G. EGADSS: A Clinical Decision Support System for use in a Service-oriented Architecture [Master’s Thesis]. University of Victoria: 2006
  • 47 de Clercq PA, Blom JA, Hasman A, Korsten HHM. Design and Implementation of a Framework to Support the Development of Clinical Guidelines. Int J Med Inform 2001; 64 2-3 285-318.
  • 48 Gennari JH, Musen MA, Fergerson RW, Grosso WE, Crubézy M, Eriksson H. et al. The Evolution of Protégé: An Environment for Knowledge-based Systems Development. Int J Hum Comput Stud 2003; 58 (01) 89-123.
  • 49 Chaudhri VK, Farquhar A, Fikes R, Karp PD, Rice JP. OKBC: a programmatic foundation for knowledge base interoperability. In: AAAI ‘98/IAAI ‘98: Proceedings of the fifteenth national/tenth conference on Artificial intelligence/Innovative applications of artificial intelligence. Menlo Park, CA, USA: 1998: 600-7.
  • 50 Musen MA. Domain Ontologies in Software Engineering: Use of Protégé with the EON Architecture. Methods Inf Med 1998; 37: 540-50.
  • 51 Tu SW, Musen MA. Modeling data and knowledge in the EON guideline architecture. In: Patel V, Rogers R, Haux R. editors. MEDINFO 2001: Proceedings of the 10th World Congress on Medical Informatics. IOS Press; Amsterdam, NL: 2001: 280-84.
  • 52 Boxwala AA, Peleg M, Tu SW, Ogunyemi O, Zeng Q, Wang D. et al. GLIF3: A Representation Format for Sharable Computer-interpretable Clinical Practice Guidelines. J Biomed Inform 2004; 37 (03) 147-61.
  • 53 Skonetzki S, Gausepohl HJ, van der Haak M, Knaebel S, Linderkamp O, Wetter T. HELEN, a modular framework for representing and implementing clinical practice guidelines. Methods Inf Med 2004; 43 (04) 413-26.
  • 54 Campbell JR, Tu SW, Mansfield JG, Boyer JI, McClay J, Parker C. et al. The SAGE Guideline Model: A Knowledge Representation Framework for Encoding Interoperable Clinical Practice Guidelines. In: Musen MA. editor. Proceedings of the 2003 AMIA Annual Symposium. Washington, DC: 2003
  • 55 Purves IN, Sugden B, Booth N, Sowerby M. The PRODIGY Project — the Iterative Development of the Release One Model. In: Lorenzi NM. editor. Proceedings of the 1999 AMIA Annual Symposium. Washington DC: 1999: 359-63.
  • 56 Fox J, Johns N, Rahmanzadeh A. Disseminating Medical Knowledge:The PROforma Approach. Artif Intell Med 1998; 14: 157-81.
  • 57 Kosara R, Miksch S. Metaphors of Movement: A Visualization and User Interface for Time-Oriented, Skeletal Plans. Artificial Intelligence in Medicine, Special Issue: Information Visualization in Medicine 2001; 22 (02) 111-31.
  • 58 Shahar Y, Miksch S, Johnson P. The Asgaard Project: A Task-Specific Framework for the Application and Critiquing of Time-Oriented Clinical Guidelines. Artif Intell Med 1998; 14: 29-51.
  • 59 Steele R, Fox J. Tallis PROforma Primer – Introduction to PROforma Language and Software with Worked Examples. London, UK: Advanced Computation Laboratory, Cancer Research; 2002
  • 60 Fox J, Das S. Safe and Sound: Artificial Intelligence in Hazardous Applications. AAAI Press, Menlo Park, CA, and MIT Press; Cambridge, Mass: 2000
  • 61 Sutton DR, Fox J. The Syntax and Semantics of the PROforma Guideline Modeling Language. J Am Med Inform Assoc 2003; 10 (05) 433-43.
  • 62 Advanced Computation Laboratory. Tallis Composer User Interface. 2006 Sep 13 [cited 2007 May 20]; Available from: http://www.acl.icnet.uk/lab/tallis/Composer_User_Interface01.htm.
  • 63 Polvani K-A, Agrawal A, Karras B, Deshpande A, Shiffman R. GEM Cutter Manual. New Haven, CT: 2000
  • 64 Shiffman RN, Karras BT, Agrawal A, Chen R, Marenco L, Nath S. GEM: A Proposal for a More Comprehensive Guideline Document Model Using XML. J Am Med Inform Assoc 2000; 07 (05) 488-98.
  • 65 Yale Center Medical Informatics. GEM Cutter: Screenshot. [cited 2005 Oct. 20]; Available from: http://gem.med.yale.edu/GEM_Cutter/gem_cutter.htm.
  • 66 Shiffman RN, Michel G, Essaihi A, Thornquist E. Bridging the Guideline Implementation Gap: A Systematic, Document-Centered Approach to Guideline Implementation. J Am Med Inform Assoc 2004; 11 (05) 418-26.
  • 67 Votruba P, Miksch S, Kosara R. Facilitating Knowledge Maintenance of Clinical Guidelines and Protocols. In: Fieschi M, Coiera E, Li Y-CJ. editors. MEDINFO 2004: Proceedings of the 11th World Congress on Medical Informatics. IOS Press; Amsterdam, NL: 2004: 57-61.
  • 68 Seyfang A, Miksch S, Marcos M, Wittenberg J, Polo-Conde C, Rosenbrand K. Bridging the Gap between Informal and Formal Guideline Representations. In: Brewka G, Coradeschi S, Perini A, Traverso P. editors. Proceedings of the 17th European Conference on Artificial Intelligence (ECAI-2006). Riva del Garda, Italy; IOS Press; Amsterdam, NL: 2006: 447-51.
  • 69 Kaiser K, Akkaya C, Miksch S. How Can Information Extraction Ease Formalizing Treatment Processes in Clinical Practice Guidelines? A Method and Its Evaluation. Artif Intell Med 2007; 39 (02) 151-63.
  • 70 Kaiser K, Miksch S. Modeling Treatment Processes Using Information Extraction. In: Yoshida H, Jain A, Ichalkaranje A, Jain LC, Ichalkaranje N. editors. Advanced Computational Intelligence Paradigms in Healthcare - 1. Springer Verlag: 2007: 189-224.
  • 71 Taboada M, Des J, MartÌnez D, Mira J. A Study of Applying Knowledge Modelling to Evidence-based Guidelines. In: ten Teije A, Lucas P, Miksch S. editors. Proceedings of the Workshop AI techniques in healthcare: evidence-based guidelines and protocols (at ECAI’06). 2006
  • 72 Ruzicka M, Svátek V. Mark-up Based Analysis of Narrative Guidelines with the Stepper Tool. In: Kaiser K, Miksch S, Tu SW. editors. Computer-based Support for Clinical Guidelines and Protocols. Proceedings of the Symposium on Computerized Guidelines and Protocols (CGP 2004). IOS Press; Amsterdam, NL: 2004: 132-6.
  • 73 Svátek V, Ruzicka M. Step-By-Step Mark-Up of Medical Guideline Documents. International Journal of Medical Informatics 2003; 70 2-3 319-35.
  • 74 Shahar Y, Young O, Shalom E, Galperin M, Mayaffit A, Moskovitch R. et al. A framework for a distributed, hybrid, multiple-ontology clinical-guideline library, and automated guideline-support tools. J Biomed Inform 2004; 37 (05) 325-44.
  • 75 Shalom E. Degel: Uruz Screenshot. 2006 [cited 2006 Sep 20]; http://medinfo.ise.bgu.ac.il/MedLab/ ResearchProjects/RP_Uruz3.htm.
  • 76 Musen MA. Preface: Protégé: community is everything. Int J Hum Comput Stud 2005; 62 (05) 545-52.
  • 77 Jenders RA, Sailors RM. Convergence on a standard for representing clinical guidelines: work in health level seven. In: Fieschi M, Coiera E, Li Y-CJ. editors. MEDINFO 2004: Proceedings of the 11th World Congress on Medical Informatics. IOS Press; Amsterdam, NL: 2004: 130-34.
  • 78 Sanders GD. Automated Creation of Clinical Practice-Guidelines from Decision Models. Stanford University; 1998
  • 79 Zhu AL, Leong TY. Automating dynamic decision model construction to support clinical practical guideline development. In: Heller B, Loffler M, Musen M, Stefanelli M. editors. Computer-Based Support for Clinical Guidelines and Protocols: Proceedings of EWGLP 2000. IOS Press; 2001: 133-148.
  • 80 Serban R, ten Teije A, van Harmelen F, Marcos M, Polo-Conde C. Extraction and use of linguistic patterns for modelling medical guidelines. Artificial Intelligence in Medicine 2007; 39 (02) 137-49.
  • 81 Zhu AL, Li J, Leong TY. Automated knowledge extraction for decision model construction: A data mining approach. In: Musen M. editor. Proceedings of the 2003 AMIAAnnual Symposium. Washington, DC: 2003: 758-62.