J Knee Surg 2019; 32(06): 565-576
DOI: 10.1055/s-0038-1660513
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Effect of Remnant Tissue Preservation in Anatomic Double-Bundle ACL Reconstruction on Knee Stability and Graft Maturation

Tsuneari Takahashi
1   Gunma Sports Medicine Research Center, Zenshukai Hospital, Maebashi, Japan
2   Department of Orthopedic Surgery, Faculty of Medicine, Jichi Medical University, Shimotsuke, Japan
,
Masashi Kimura
1   Gunma Sports Medicine Research Center, Zenshukai Hospital, Maebashi, Japan
,
Keiichi Hagiwara
1   Gunma Sports Medicine Research Center, Zenshukai Hospital, Maebashi, Japan
,
Takashi Ohsawa
3   Department of Orthopedic Surgery, Faculty of Medicine, Gunma University, Maebashi, Japan
,
Katsushi Takeshita
2   Department of Orthopedic Surgery, Faculty of Medicine, Jichi Medical University, Shimotsuke, Japan
› Author Affiliations
Further Information

Publication History

23 January 2018

05 May 2018

Publication Date:
13 June 2018 (online)

Abstract

Several investigators have developed anterior cruciate ligament reconstructions (ACLR) with remnant tissue preservation (RTP) and have reported better clinical outcomes. However, the effects of RTP remain controversial. To date, no reports have compared both clinical and radiological outcomes of anatomic double-bundle ACLR using the hamstring tendon and outside-in technique with/without RTP. This article evaluates the effectiveness of RTP in ACLR on knee stability and graft maturation. In total, 75 patients with unilateral ACL injury who had undergone anatomic double-bundle ACLR using autografted hamstring tendon either with RTP (Group P, n = 43) or without (Group N, n = 32) were enrolled. Clinical scores, pre- and postoperative side-to-side differences (SSDs) obtained using Telos, radiological evaluations of the grafted tendon using the signal/noise quotient (SNQ) measured using magnetic resonance imaging, and arthroscopic evaluations of the grafted tendon were retrospectively compared between the groups. Postoperative SSDs were smaller in the Group P (0.78 ± 1.90 mm) than in the Group N (1.29 ± 2.18 mm); however, this difference was not significant. Comparing two subgroups of the Group P, the SSD was significantly smaller in those with sufficient remnant coverage (−0.56 ± 1.38 mm) than in those without (1.48 ± 1.77 mm) (p = 0.019), as well as in the Group N patients (p = 0.019). The degree of synovial coverage of the anteromedial (p = 0.0064) and posterolateral (p = 0.032) bundle grafted tendon at the time of second-look arthroscopy was significantly better in the Group P than in the Group N. SNQ values of ACL grafted tendon at proximal (p = 0.049), middle, and distal (p = 0.039) one-third in Group P were better than those in Group N. RTP may enhance synovial coverage and maturation of the grafted tendon. Sufficient remnant tissue coverage may contribute to better knee stability. This is a Level III, retrospective comparative study.

Note

This study was performed at Gunma Sports Medicine Research Center, Zenshukai Hospital, Maebashi, Japan.


Authors' Contributions

T.T. designed the study and acquired, analyzed, and interpreted data. M.K., K.H., T.O., and K.T. participated in study conception and design and revision of the data and manuscript. All authors read and approved the final manuscript.


Ethical Approval

The Institutional Review Board of the ethics committee of our institution approved this retrospective comparative study. Approval number was 170404. This research involved a retrospective comparative study of electronic medical records and videos collected at the time of ACL reconstruction surgery and second look arthroscopy. Therefore, the ethical committee of our institution waived the requirement for formal written informed consent.


 
  • References

  • 1 Weiler A, Peine R, Pashmineh-Azar A, Abel C, Südkamp NP, Hoffmann RF. Tendon healing in a bone tunnel. Part I: biomechanical results after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 2002; 18 (02) 113-123
  • 2 Delay BS, McGrath BE, Mindell ER. Observations on a retrieved patellar tendon autograft used to reconstruct the anterior cruciate ligament. A case report. J Bone Joint Surg Am 2002; ;84-A( (08) 1433-1438
  • 3 Shino K, Oakes BW, Horibe S, Nakata K, Nakamura N. Collagen fibril populations in human anterior cruciate ligament allografts. Electron microscopic analysis. Am J Sports Med 1995; 23 (02) 203-208
  • 4 Ochi M, Iwasa J, Uchio Y, Adachi N, Sumen Y. The regeneration of sensory neurones in the reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 1999; 81 (05) 902-906
  • 5 Kaeding CC, Pedroza AD, Reinke EK, Huston LJ, Spindler KP. ; MOON Consortium. Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction: prospective analysis of 2488 primary ACL reconstructions from the MOON cohort. Am J Sports Med 2015; 43 (07) 1583-1590
  • 6 Georgoulis AD, Papadonikolakis A, Papageorgiou CD, Mitsou A, Stergiou N. Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. Am J Sports Med 2003; 31 (01) 75-79
  • 7 Xie GM, Huang Fu XQ, Zhao JZ. The effect of remnant preservation on patterns of gene expression in a rabbit model of anterior cruciate ligament reconstruction. J Surg Res 2012; 176 (02) 510-516
  • 8 Bali K, Dhillon MS, Vasistha RK, Kakkar N, Chana R, Prabhakar S. Efficacy of immunohistological methods in detecting functionally viable mechanoreceptors in the remnant stumps of injured anterior cruciate ligaments and its clinical importance. Knee Surg Sports Traumatol Arthrosc 2012; 20 (01) 75-80
  • 9 Uefuji A, Matsumoto T, Matsushita T. , et al. Age-related differences in anterior cruciate ligament remnant vascular-derived cells. Am J Sports Med 2014; 42 (06) 1478-1486
  • 10 Nguyen DT, Ramwadhdoebe TH, van der Hart CP, Blankevoort L, Tak PP, van Dijk CN. Intrinsic healing response of the human anterior cruciate ligament: an histological study of reattached ACL remnants. J Orthop Res 2014; 32 (02) 296-301
  • 11 Zhang S, Matsumoto T, Uefuji A. , et al. Anterior cruciate ligament remnant tissue harvested within 3-months after injury predicts higher healing potential. BMC Musculoskelet Disord 2015; 16: 390
  • 12 Sun L, Wu B, Tian M, Liu B, Luo Y. Comparison of graft healing in anterior cruciate ligament reconstruction with and without a preserved remnant in rabbits. Knee 2013; 20 (06) 537-544
  • 13 Mifune Y, Ota S, Takayama K. , et al. Therapeutic advantage in selective ligament augmentation for partial tears of the anterior cruciate ligament: results in an animal model. Am J Sports Med 2013; 41 (02) 365-373
  • 14 Takahashi T, Kondo E, Yasuda K. , et al. Effects of remnant tissue preservation on the tendon graft in anterior cruciate ligament reconstruction: a biomechanical and histological study. Am J Sports Med 2016; 44 (07) 1708-1716
  • 15 Inokuchi T, Matsumoto T, Takayama K. , et al. Influence of the injury-to-surgery interval on the healing potential of human anterior cruciate ligament-derived cells. Am J Sports Med 2017; 45 (06) 1359-1369
  • 16 Song GY, Zhang J, Li X, Chen XZ, Li Y, Feng H. Acute anterior cruciate ligament reconstruction with an augmented remnant repair: a comparative macroscopic and biomechanical study in an animal model. Arthroscopy 2014; 30 (03) 344-351
  • 17 Zhang L, Jiang K, Chai H, Zhou M, Bai J. A comparative animal study of tendon grafts healing after remnant-preserving versus conventional anterior cruciate ligament reconstruction. Med Sci Monit 2016; 22: 3426-3437
  • 18 Ahn JH, Wang JH, Lee YS, Kim JG, Kang JH, Koh KH. Anterior cruciate ligament reconstruction using remnant preservation and a femoral tensioning technique: clinical and magnetic resonance imaging results. Arthroscopy 2011; 27 (08) 1079-1089
  • 19 Takazawa Y, Ikeda H, Kawasaki T. , et al. ACL reconstruction preserving the ACL remnant achieves good clinical outcomes and can reduce subsequent graft rupture. Orthop J Sports Med 2013; 1 (04) 2325967113505076
  • 20 Kim MK, Lee SR, Ha JK, Ra HJ, Kim SB, Kim JG. Comparison of second-look arthroscopic findings and clinical results according to the amount of preserved remnant in anterior cruciate ligament reconstruction. Knee 2014; 21 (03) 774-778
  • 21 Matsumoto T, Kuroda R, Matsushita T. , et al. Reduction of tunnel enlargement with use of autologous ruptured tissue in anterior cruciate ligament reconstruction: a pilot clinical trial. Arthroscopy 2014; 30 (04) 468-474
  • 22 Kondo E, Yasuda K, Onodera J, Kawaguchi Y, Kitamura N. Effects of remnant tissue preservation on clinical and arthroscopic results after anatomic double-bundle anterior cruciate ligament reconstruction. Am J Sports Med 2015; 43 (08) 1882-1892
  • 23 Sabat D, Kumar V. Partial tears of anterior cruciate ligament: results of single bundle augmentation. Indian J Orthop 2015; 49 (02) 129-135
  • 24 Lee BI, Kim BM, Kho DH, Kwon SW, Kim HJ, Hwang HR. Does the tibial remnant of the anterior cruciate ligament promote ligamentization?. Knee 2016; 23 (06) 1133-1142
  • 25 Kitamura N, Yasuda K, Yokota M. , et al. The effect of intraoperative graft coverage with preserved remnant tissue on the results of the pivot-shift test after anatomic double-bundle anterior cruciate ligament reconstruction: quantitative evaluations with an electromagnetic sensor system. Am J Sports Med 2017; 45 (10) 2217-2225
  • 26 Yanagisawa S, Kimura M, Hagiwara K. , et al. The remnant preservation technique reduces the amount of bone tunnel enlargement following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2018; 26 (02) 491-499
  • 27 Nakayama H, Kambara S, Iseki T, Kanto R, Kurosaka K, Yoshiya S. Double-bundle anterior cruciate ligament reconstruction with and without remnant preservation - comparison of early postoperative outcomes and complications. Knee 2017; 24 (05) 1039-1046
  • 28 Jung YB, Jung HJ, Siti HT. , et al. Comparison of anterior cruciate ligament reconstruction with preservation only versus remnant tensioning technique. Arthroscopy 2011; 27 (09) 1252-1258
  • 29 Cha J, Choi SH, Kwon JW, Lee SH, Ahn JH. Analysis of cyclops lesions after different anterior cruciate ligament reconstructions: a comparison of the single-bundle and remnant bundle preservation techniques. Skeletal Radiol 2012; 41 (08) 997-1002
  • 30 Guo L, Chen H, Luo JM, Yang L, Gu LC, Fu DJ. An arthroscopic second-look study on the effect of remnant preservation on synovialization of bone-patellar tendon-bone allograft in anterior cruciate ligament reconstruction. Arthroscopy 2016; 32 (05) 868-877
  • 31 Naraoka T, Kimura Y, Tsuda E, Yamamoto Y, Ishibashi Y. Is remnant preservation truly beneficial to anterior cruciate ligament reconstruction healing? Clinical and magnetic resonance imaging evaluations of remnant-preserved reconstruction. Am J Sports Med 2017; 45 (05) 1049-1058
  • 32 Sonnery-Cottet B, Freychet B, Murphy CG, Pupim BH, Thaunat M. Anterior cruciate ligament reconstruction and preservation: the single-anteromedial bundle biological augmentation (SAMBBA) technique. Arthrosc Tech 2014; 3 (06) e689-e693
  • 33 Buscayret F, Temponi EF, Saithna A, Thaunat M, Sonnery-Cottet B. Three-dimensional CT evaluation of tunnel positioning in ACL reconstruction using the single anteromedial bundle biological augmentation (SAMBBA) technique. Orthop J Sports Med 2017; 5 (05) 2325967117706511
  • 34 Hoshino Y, Kuroda R, Nagamune K. , et al. In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med 2007; 35 (07) 1098-1104
  • 35 Crain EH, Fithian DC, Paxton EW, Luetzow WF. Variation in anterior cruciate ligament scar pattern: does the scar pattern affect anterior laxity in anterior cruciate ligament-deficient knees?. Arthroscopy 2005; 21 (01) 19-24
  • 36 Shino K, Suzuki T, Iwahashi T. , et al. The resident's ridge as an arthroscopic landmark for anatomical femoral tunnel drilling in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2010; 18 (09) 1164-1168
  • 37 Kai S, Kondo E, Kitamura N. , et al. A quantitative technique to create a femoral tunnel at the averaged center of the anteromedial bundle attachment in anatomic double-bundle anterior cruciate ligament reconstruction. BMC Musculoskelet Disord 2013; 14: 189
  • 38 Yasuda K, Kondo E, Ichiyama H. , et al. Anatomic reconstruction of the anteromedial and posterolateral bundles of the anterior cruciate ligament using hamstring tendon grafts. Arthroscopy 2004; 20 (10) 1015-1025
  • 39 Ohsawa T, Kimura M, Kobayashi Y, Hagiwara K, Yorifuji H, Takagishi K. Arthroscopic evaluation of preserved ligament remnant after selective anteromedial or posterolateral bundle anterior cruciate ligament reconstruction. Arthroscopy 2012; 28 (06) 807-817
  • 40 Kondo E, Yasuda K. Second-look arthroscopic evaluations of anatomic double-bundle anterior cruciate ligament reconstruction: relation with postoperative knee stability. Arthroscopy 2007; 23 (11) 1198-1209
  • 41 Recht MP, Piraino DW, Cohen MA, Parker RD, Bergfeld JA. Localized anterior arthrofibrosis (cyclops lesion) after reconstruction of the anterior cruciate ligament: MR imaging findings. Am J Roentgenol 1995; 165 (02) 383-385
  • 42 Bouguennec N, Odri GA, Graveleau N, Colombet P. Comparative reproducibility of TELOS™ and GNRB® for instrumental measurement of anterior tibial translation in normal knees. Orthop Traumatol Surg Res 2015; 101 (03) 301-305
  • 43 Takahashi T, Kimura M, Takeshita K. MRI evaluation of the ACL remnant tissue in ACL-deficient knee. J Orthop Surg (Hong Kong) 2017; 25 (03) 2309499017739479
  • 44 Ahn JH, Lee SH, Choi SH, Lim TK. Magnetic resonance imaging evaluation of anterior cruciate ligament reconstruction using quadrupled hamstring tendon autografts: comparison of remnant bundle preservation and standard technique. Am J Sports Med 2010; 38 (09) 1768-1777
  • 45 Bernard M, Hertel P, Hornung H, Cierpinski T. Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 1997; 10 (01) 14-21 , discussion 21–22
  • 46 Tsuda E, Ishibashi Y, Fukuda A, Yamamoto Y, Tsukada H, Ono S. Tunnel position and relationship to postoperative knee laxity after double-bundle anterior cruciate ligament reconstruction with a transtibial technique. Am J Sports Med 2010; 38 (04) 698-706
  • 47 Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 2013; 48 (03) 452-458
  • 48 Naraoka T, Ishibashi Y, Tsuda E. , et al. Time-dependent gene expression and immunohistochemical analysis of the injured anterior cruciate ligament. Bone Joint Res 2012; 1 (10) 238-244
  • 49 Kondo E, Yasuda K, Azuma H, Tanabe Y, Yagi T. Prospective clinical comparisons of anatomic double-bundle versus single-bundle anterior cruciate ligament reconstruction procedures in 328 consecutive patients. Am J Sports Med 2008; 36 (09) 1675-1687
  • 50 Vogl TJ, Schmitt J, Lubrich J. , et al. Reconstructed anterior cruciate ligaments using patellar tendon ligament grafts: diagnostic value of contrast-enhanced MRI in a 2-year follow-up regimen. Eur Radiol 2001; 11 (08) 1450-1456
  • 51 Yamanaka M, Yasuda K, Tohyama H, Nakano H, Wada T. The effect of cyclic displacement on the biomechanical characteristics of anterior cruciate ligament reconstructions. Am J Sports Med 1999; 27 (06) 772-777
  • 52 Muneta T, Koga H, Nakamura T. , et al. A new behind-remnant approach for remnant-preserving double-bundle anterior cruciate ligament reconstruction compared with a standard approach. Knee Surg Sports Traumatol Arthrosc 2015; 23 (12) 3743-3749
  • 53 Sim JA, Kim JM, Lee S, Bae JY, Seon JK. Comparison of tunnel variability between trans-portal and outside-in techniques in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2017; 25 (04) 1227-1233
  • 54 Lee BI, Min KD, Choi HS, Kim JB, Kim ST. Arthroscopic anterior cruciate ligament reconstruction with the tibial-remnant preserving technique using a hamstring graft. Arthroscopy 2006; 22 (03) 340.e1-340.e7
  • 55 Noyes FR, Grood ES, Cummings JF, Wroble RR. An analysis of the pivot shift phenomenon. The knee motions and subluxations induced by different examiners. Am J Sports Med 1991; 19 (02) 148-155
  • 56 Nagai K, Araki D, Matsushita T. , et al. Biomechanical function of anterior cruciate ligament remnants: quantitative measurement with a 3-dimensional electromagnetic measurement system. Arthroscopy 2016; 32 (07) 1359-1366