Subscribe to RSS
DOI: 10.1055/s-0038-1672201
Acute on Chronic Liver Failure and Immune Dysfunction: A Mimic of Sepsis
Publication History
Publication Date:
28 November 2018 (online)
Abstract
Both the adaptive and innate arms of immunity are altered in patients with cirrhosis, which have both prognostic and clinical implications. Acute on chronic liver failure (ACLF), defined as decompensated cirrhosis with associated organ failure, carries a high risk of 28-day mortality and is marked by a significant inflammatory response. Patients with decompensated chronic liver disease display a shift from a chronic low-grade inflammatory state to one of intense inflammation, followed by the development of immunoparalysis. Considerable heterogeneity exists depending on the nature of the inciting cause and duration of ACLF. In this review, we will highlight the changes that immune cell populations in the liver undergo during decompensated liver disease, underscoring the immunological paradox between inflammation and increased susceptibility to infection that occurs during ACLF and progressive cirrhosis, as well as provide future perspectives regarding potentially useful biomarkers and possible avenues for treatment.
-
References
- 1 Gustot T, Fernandez J, Garcia E. , et al; CANONIC Study Investigators of the EASL-CLIF Consortium. Clinical course of acute-on-chronic liver failure syndrome and effects on prognosis. Hepatology 2015; 62 (01) 243-252
- 2 Moreau R, Jalan R, Gines P. , et al; CANONIC Study Investigators of the EASL–CLIF Consortium. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 2013; 144 (07) 1426-1437 , 1437.e1–1437.e9
- 3 Clària J, Stauber RE, Coenraad MJ. , et al; CANONIC Study Investigators of the EASL-CLIF Consortium and the European Foundation for the Study of Chronic Liver Failure (EF-CLIF). Systemic inflammation in decompensated cirrhosis: characterization and role in acute-on-chronic liver failure. Hepatology 2016; 64 (04) 1249-1264
- 4 Dirchwolf M, Podhorzer A, Marino M. , et al. Immune dysfunction in cirrhosis: distinct cytokines phenotypes according to cirrhosis severity. Cytokine 2016; 77: 14-25
- 5 Jenne CN, Kubes P. Immune surveillance by the liver. Nat Immunol 2013; 14 (10) 996-1006
- 6 Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology 2006; 43 (02) (Suppl. 01) S54-S62
- 7 Heymann F, Tacke F. Immunology in the liver--from homeostasis to disease. Nat Rev Gastroenterol Hepatol 2016; 13 (02) 88-110
- 8 Doherty DG. Immunity, tolerance and autoimmunity in the liver: a comprehensive review. J Autoimmun 2016; 66: 60-75
- 9 Kubes P, Jenne C. Immune responses in the liver. Annu Rev Immunol 2018; 36: 247-277
- 10 Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 2010; 10 (11) 753-766
- 11 Ebrahimkhani MR, Mohar I, Crispe IN. Cross-presentation of antigen by diverse subsets of murine liver cells. Hepatology 2011; 54 (04) 1379-1387
- 12 Schildberg FA, Hegenbarth SI, Schumak B, Scholz K, Limmer A, Knolle PA. Liver sinusoidal endothelial cells veto CD8 T cell activation by antigen-presenting dendritic cells. Eur J Immunol 2008; 38 (04) 957-967
- 13 Knolle P, Schlaak J, Uhrig A, Kempf P, Meyer zum Büschenfelde KH, Gerken G. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J Hepatol 1995; 22 (02) 226-229
- 14 Ellett JD, Atkinson C, Evans ZP. , et al. Murine Kupffer cells are protective in total hepatic ischemia/reperfusion injury with bowel congestion through IL-10. J Immunol 2010; 184 (10) 5849-5858
- 15 You Q, Cheng L, Kedl RM, Ju C. Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology 2008; 48 (03) 978-990
- 16 Albillos A, Lario M, Álvarez-Mon M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. J Hepatol 2014; 61 (06) 1385-1396
- 17 Helmy KY, Katschke Jr KJ, Gorgani NN. , et al. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 2006; 124 (05) 915-927
- 18 Hansen IS, Hoepel W, Zaat SAJ, Baeten DLP, den Dunnen J. Serum IgA immune complexes promote proinflammatory cytokine production by human macrophages, monocytes, and Kupffer cells through FcαRI-TLR cross-talk. J Immunol 2017; 199 (12) 4124-4131
- 19 Wu J, Meng Z, Jiang M. , et al. Toll-like receptor-induced innate immune responses in non-parenchymal liver cells are cell type-specific. Immunology 2010; 129 (03) 363-374
- 20 Liu S, Gallo DJ, Green AM. , et al. Role of toll-like receptors in changes in gene expression and NF-kappa B activation in mouse hepatocytes stimulated with lipopolysaccharide. Infect Immun 2002; 70 (07) 3433-3442
- 21 Faure-Dupuy S, Durantel D, Lucifora J. Liver macrophages: friend or foe during hepatitis B infection?. Liver Int 2018; 38 (10) 1718-1729
- 22 Schwabe RF, Seki E, Brenner DA. Toll-like receptor signaling in the liver. Gastroenterology 2006; 130 (06) 1886-1900
- 23 Tazi KA, Quioc J-J, Saada V, Bezeaud A, Lebrec D, Moreau R. Upregulation of TNF-alpha production signaling pathways in monocytes from patients with advanced cirrhosis: possible role of Akt and IRAK-M. J Hepatol 2006; 45 (02) 280-289
- 24 Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 2008; 48 (01) 322-335
- 25 Dolganiuc A, Norkina O, Kodys K. , et al. Viral and host factors induce macrophage activation and loss of toll-like receptor tolerance in chronic HCV infection. Gastroenterology 2007; 133 (05) 1627-1636
- 26 Wasmuth HE, Kunz D, Yagmur E. , et al. Patients with acute on chronic liver failure display “sepsis-like” immune paralysis. J Hepatol 2005; 42 (02) 195-201
- 27 Kubes P, Mehal WZ. Sterile inflammation in the liver. Gastroenterology 2012; 143 (05) 1158-1172
- 28 Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115 (02) 209-218
- 29 Campbell AC, Dronfield MW, Toghill PJ, Reeves WG. Neutrophil function in chronic liver disease. Clin Exp Immunol 1981; 45 (01) 81-89
- 30 Tritto G, Bechlis Z, Stadlbauer V. , et al. Evidence of neutrophil functional defect despite inflammation in stable cirrhosis. J Hepatol 2011; 55 (03) 574-581
- 31 DeMeo AN, Andersen BR. Defective chemotaxis associated with a serum inhibitor in cirrhotic patients. N Engl J Med 1972; 286 (14) 735-740
- 32 Van Epps DE, Strickland RG, Williams Jr RC. Inhibitors of leukocyte chemotaxis in alcoholic liver disease. Am J Med 1975; 59 (02) 200-207
- 33 Rajkovic IA, Williams R. Abnormalities of neutrophil phagocytosis, intracellular killing and metabolic activity in alcoholic cirrhosis and hepatitis. Hepatology 1986; 6 (02) 252-262
- 34 Stadlbauer V, Mookerjee RP, Wright GA. , et al. Role of toll-like receptors 2, 4, and 9 in mediating neutrophil dysfunction in alcoholic hepatitis. Am J Physiol Gastrointest Liver Physiol 2009; 296 (01) G15-G22
- 35 Taylor NJ, Nishtala A, Manakkat Vijay GK. , et al. Circulating neutrophil dysfunction in acute liver failure. Hepatology 2013; 57 (03) 1142-1152
- 36 Fiuza C, Salcedo M, Clemente G, Tellado JM. Granulocyte colony-stimulating factor improves deficient in vitro neutrophil transendothelial migration in patients with advanced liver disease. Clin Diagn Lab Immunol 2002; 9 (02) 433-439
- 37 Rolando N, Wade J, Davalos M, Wendon J, Philpott-Howard J, Williams R. The systemic inflammatory response syndrome in acute liver failure. Hepatology 2000; 32 (4, Pt 1): 734-739
- 38 Chavez-Tapia NC, Mendiola-Pastrana I, Ornelas-Arroyo VJ. , et al. Granulocyte-colony stimulating factor for acute-on-chronic liver failure: systematic review and meta-analysis. Ann Hepatol 2015; 14 (05) 631-641
- 39 Kedarisetty CK, Anand L, Bhardwaj A. , et al. Combination of granulocyte colony-stimulating factor and erythropoietin improves outcomes of patients with decompensated cirrhosis. Gastroenterology 2015; 148 (07) 1362-70.e7
- 40 Mookerjee RP, Stadlbauer V, Lidder S. , et al. Neutrophil dysfunction in alcoholic hepatitis superimposed on cirrhosis is reversible and predicts the outcome. Hepatology 2007; 46 (03) 831-840
- 41 Lin B-Y, Zhou L, Geng L. , et al. High neutrophil-lymphocyte ratio indicates poor prognosis for acute-on-chronic liver failure after liver transplantation. World J Gastroenterol 2015; 21 (11) 3317-3324
- 42 Kwon JH, Jang JW, Kim YW. , et al. The usefulness of C-reactive protein and neutrophil-to-lymphocyte ratio for predicting the outcome in hospitalized patients with liver cirrhosis. BMC Gastroenterol 2015; 15: 146
- 43 Heymann F, Peusquens J, Ludwig-Portugall I. , et al. Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology 2015; 62 (01) 279-291
- 44 Breous E, Somanathan S, Vandenberghe LH, Wilson JM. Hepatic regulatory T cells and Kupffer cells are crucial mediators of systemic T cell tolerance to antigens targeting murine liver. Hepatology 2009; 50 (02) 612-621
- 45 Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE. Kupffer cells in the liver. Compr Physiol 2013; 3 (02) 785-797
- 46 Huang L-R, Wohlleber D, Reisinger F. , et al. Intrahepatic myeloid-cell aggregates enable local proliferation of CD8(+) T cells and successful immunotherapy against chronic viral liver infection. Nat Immunol 2013; 14 (06) 574-583
- 47 Devisscher L, Scott CL, Lefere S. , et al. Non-alcoholic steatohepatitis induces transient changes within the liver macrophage pool. Cell Immunol 2017; 322: 74-83
- 48 Xue J, Schmidt SV, Sander J. , et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 2014; 40 (02) 274-288
- 49 Zimmermann HW, Seidler S, Nattermann J. , et al. Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis. PLoS One 2010; 5 (06) e11049
- 50 Escoll P, del Fresno C, García L. , et al. Rapid up-regulation of IRAK-M expression following a second endotoxin challenge in human monocytes and in monocytes isolated from septic patients. Biochem Biophys Res Commun 2003; 311 (02) 465-472
- 51 Deng JC, Cheng G, Newstead MW. , et al. Sepsis-induced suppression of lung innate immunity is mediated by IRAK-M. J Clin Invest 2006; 116 (09) 2532-2542
- 52 Shi J, Fujieda H, Kokubo Y, Wake K. Apoptosis of neutrophils and their elimination by Kupffer cells in rat liver. Hepatology 1996; 24 (05) 1256-1263
- 53 Shi J, Gilbert GE, Kokubo Y, Ohashi T. Role of the liver in regulating numbers of circulating neutrophils. Blood 2001; 98 (04) 1226-1230
- 54 Grozovsky R, Hoffmeister KM, Falet H. Novel clearance mechanisms of platelets. Curr Opin Hematol 2010; 17 (06) 585-589
- 55 Campana L, Starkey Lewis PJ, Pellicoro A. , et al. The STAT3-IL-10-IL-6 pathway is a novel regulator of macrophage efferocytosis and phenotypic conversion in sterile liver injury. J Immunol 2018; 200 (03) 1169-1187
- 56 O'Brien AJ, Fullerton JN, Massey KA. , et al. Immunosuppression in acutely decompensated cirrhosis is mediated by prostaglandin E2. Nat Med 2014; 20 (05) 518-523
- 57 Bernsmeier C, Pop OT, Singanayagam A. , et al. Patients with acute-on-chronic liver failure have increased numbers of regulatory immune cells expressing the receptor tyrosine kinase MERTK. Gastroenterology 2015; 148 (03) 603-615.e14
- 58 Seki S, Habu Y, Kawamura T. , et al. The liver as a crucial organ in the first line of host defense: the roles of Kupffer cells, natural killer (NK) cells and NK1.1 Ag+ T cells in T helper 1 immune responses. Immunol Rev 2000; 174: 35-46
- 59 Dobashi H, Seki S, Habu Y. , et al. Activation of mouse liver natural killer cells and NK1.1(+) T cells by bacterial superantigen-primed Kupffer cells. Hepatology 1999; 30 (02) 430-436
- 60 Abe M, Tokita D, Raimondi G, Thomson AW. Endotoxin modulates the capacity of CpG-activated liver myeloid DC to direct Th1-type responses. Eur J Immunol 2006; 36 (09) 2483-2493
- 61 Chen Y, Jiang G, Yang H-R. , et al. Distinct response of liver myeloid dendritic cells to endotoxin is mediated by IL-27. J Hepatol 2009; 51 (03) 510-519
- 62 Ibrahim J, Nguyen AH, Rehman A. , et al. Dendritic cell populations with different concentrations of lipid regulate tolerance and immunity in mouse and human liver. Gastroenterology 2012; 143 (04) 1061-1072
- 63 Kingham TP, Chaudhry UI, Plitas G, Katz SC, Raab J, DeMatteo RP. Murine liver plasmacytoid dendritic cells become potent immunostimulatory cells after Flt-3 ligand expansion. Hepatology 2007; 45 (02) 445-454
- 64 Connolly MK, Bedrosian AS, Mallen-St Clair J. , et al. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha. J Clin Invest 2009; 119 (11) 3213-3225
- 65 Khanam A, Trehanpati N, Garg V. , et al. Altered frequencies of dendritic cells and IFN-gamma-secreting T cells with granulocyte colony-stimulating factor (G-CSF) therapy in acute-on- chronic liver failure. Liver Int 2014; 34 (04) 505-513
- 66 Zhao J, Zhang J-Y, Yu H-W. , et al. Improved survival ratios correlate with myeloid dendritic cell restoration in acute-on-chronic liver failure patients receiving methylprednisolone therapy. Cell Mol Immunol 2012; 9 (05) 417-422
- 67 Muñoz L, José Borrero M, Ubeda M. , et al. Interaction between intestinal dendritic cells and bacteria translocated from the gut in rats with cirrhosis. Hepatology 2012; 56 (05) 1861-1869
- 68 Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol 2009; 27: 147-163
- 69 Tian Z, Chen Y, Gao B. Natural killer cells in liver disease. Hepatology 2013; 57 (04) 1654-1662
- 70 Laso FJ, Madruga JI, Girón JA. , et al. Decreased natural killer cytotoxic activity in chronic alcoholism is associated with alcohol liver disease but not active ethanol consumption. Hepatology 1997; 25 (05) 1096-1100
- 71 Jeong W-I, Park O, Suh Y-G. , et al. Suppression of innate immunity (natural killer cell/interferon-γ) in the advanced stages of liver fibrosis in mice. Hepatology 2011; 53 (04) 1342-1351
- 72 Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 2006; 130 (02) 435-452
- 73 Wan Z, Xie G, Wu Y. , et al. Cytokines elevated in patients with HBV-related acute-on-chronic liver failure promote NK cell mediated cytotoxicity through TRAIL. Dig Liver Dis 2016; 48 (05) 528-535
- 74 Chen T, Zhu L, Zhou Y. , et al. KCTD9 contributes to liver injury through NK cell activation during hepatitis B virus-induced acute-on-chronic liver failure. Clin Immunol 2013; 146 (03) 207-216
- 75 Liu F, Duan X, Wan Z. , et al. Lower number and decreased function of natural killer cells in hepatitis B virus related acute-on-chronic liver failure. Clin Res Hepatol Gastroenterol 2016; 40 (05) 605-613
- 76 Braet F, Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 2002; 1 (01) 1
- 77 Limmer A, Knolle PA. Liver sinusoidal endothelial cells: a new type of organ-resident antigen-presenting cell. Arch Immunol Ther Exp (Warsz) 2001; 49 (Suppl. 01) S7-S11
- 78 Connolly MK, Bedrosian AS, Malhotra A. , et al. In hepatic fibrosis, liver sinusoidal endothelial cells acquire enhanced immunogenicity. J Immunol 2010; 185 (04) 2200-2208
- 79 Limmer A, Ohl J, Kurts C. , et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med 2000; 6 (12) 1348-1354
- 80 Neumann K, Rudolph C, Neumann C, Janke M, Amsen D, Scheffold A. Liver sinusoidal endothelial cells induce immunosuppressive IL-10-producing Th1 cells via the Notch pathway. Eur J Immunol 2015; 45 (07) 2008-2016
- 81 Laso FJ, Madruga JI, López A. , et al. Distribution of peripheral blood lymphoid subsets in alcoholic liver cirrhosis: influence of ethanol intake. Alcohol Clin Exp Res 1996; 20 (09) 1564-1568
- 82 Doi H, Iyer TK, Carpenter E. , et al. Dysfunctional B-cell activation in cirrhosis resulting from hepatitis C infection associated with disappearance of CD27-positive B-cell population. Hepatology 2012; 55 (03) 709-719
- 83 Cook RT, Waldschmidt TJ, Cook BL, Labrecque DR, McLatchie K. Loss of the CD5+ and CD45RAhi B cell subsets in alcoholics. Clin Exp Immunol 1996; 103 (02) 304-310
- 84 Holz LE, Benseler V, Bowen DG. , et al. Intrahepatic murine CD8 T-cell activation associates with a distinct phenotype leading to Bim-dependent death. Gastroenterology 2008; 135 (03) 989-997
- 85 Benseler V, Warren A, Vo M. , et al. Hepatocyte entry leads to degradation of autoreactive CD8 T cells. Proc Natl Acad Sci U S A 2011; 108 (40) 16735-16740
- 86 Lario M, Muñoz L, Ubeda M. , et al. Defective thymopoiesis and poor peripheral homeostatic replenishment of T-helper cells cause T-cell lymphopenia in cirrhosis. J Hepatol 2013; 59 (04) 723-730
- 87 Devière J, Denys C, Schandene L. , et al. Decreased proliferative activity associated with activation markers in patients with alcoholic liver cirrhosis. Clin Exp Immunol 1988; 72 (03) 377-382
- 88 McGovern BH, Golan Y, Lopez M. , et al. The impact of cirrhosis on CD4+ T cell counts in HIV-seronegative patients. Clin Infect Dis 2007; 44 (03) 431-437
- 89 Albillos A, Hera Ad AdeL, Reyes E. , et al. Tumour necrosis factor-alpha expression by activated monocytes and altered T-cell homeostasis in ascitic alcoholic cirrhosis: amelioration with norfloxacin. J Hepatol 2004; 40 (04) 624-631
- 90 Dong X, Gong Y, Zeng H. , et al. Imbalance between circulating CD4+ regulatory T and conventional T lymphocytes in patients with HBV-related acute-on-chronic liver failure. Liver Int 2013; 33 (10) 1517-1526
- 91 Girón-González JA, Alvarez-Mon M, Menéndez-Caro JL. , et al. T lymphocytes from alcoholic cirrhotic patients show normal interleukin-2 production but a defective proliferative response to polyclonal mitogens. Am J Gastroenterol 1994; 89 (05) 767-773
- 92 Morishima C, Di Bisceglie AM, Rothman AL. , et al; HALT-C Trial Group. Antigen-specific T lymphocyte proliferation decreases over time in advanced chronic hepatitis C. J Viral Hepat 2012; 19 (06) 404-413
- 93 Bernsmeier C, Triantafyllou E, Brenig R. , et al. CD14+ CD15− HLA-DR− myeloid-derived suppressor cells impair antimicrobial responses in patients with acute-on-chronic liver failure. Gut 2018; 67 (06) 1155-1167
- 94 Shen C, Yan W-Z, Zhao C-Y. , et al. Increased CD4+CD25+ regulatory T cells correlate with poor short-term outcomes in hepatitis B virus-related acute-on-chronic liver failure patients. J Microbiol Immunol Infect 2015; 48 (02) 137-146
- 95 Zhang G-L, Xie D-Y, Lin B-L. , et al. Imbalance of interleukin-17-producing CD4 T cells/regulatory T cells axis occurs in remission stage of patients with hepatitis B virus-related acute-on-chronic liver failure. J Gastroenterol Hepatol 2013; 28 (03) 513-521
- 96 Niu Y-H, Yin D-L, Liu H-L. , et al. Restoring the Treg cell to Th17 cell ratio may alleviate HBV-related acute-on-chronic liver failure. World J Gastroenterol 2013; 19 (26) 4146-4154
- 97 Clària J, Arroyo V, Moreau R. The acute-on-chronic liver failure syndrome, or when the innate immune system goes astray. J Immunol 2016; 197 (10) 3755-3761
- 98 Lehmann JM, Claus K, Jansen C. , et al. Circulating CXCL10 in cirrhotic portal hypertension might reflect systemic inflammation and predict ACLF and mortality. Liver Int 2018; 38 (05) 875-884
- 99 Berres M-L, Schnyder B, Yagmur E. , et al. Longitudinal monocyte human leukocyte antigen-DR expression is a prognostic marker in critically ill patients with decompensated liver cirrhosis. Liver Int 2009; 29 (04) 536-543
- 100 Behrens EM, Gadue P, Gong SY, Garrett S, Stein PL, Cohen PL. The mer receptor tyrosine kinase: expression and function suggest a role in innate immunity. Eur J Immunol 2003; 33 (08) 2160-2167
- 101 Khamri W, Abeles RD, Hou TZ. , et al. Increased expression of cytotoxic T-lymphocyte-associated protein 4 by T cells, induced by B7 in Sera, reduces adaptive immunity in patients with acute liver failure. Gastroenterology 2017; 153 (01) 263-276.e8
- 102 Fernández J, Acevedo J, Castro M. , et al. Prevalence and risk factors of infections by multiresistant bacteria in cirrhosis: a prospective study. Hepatology 2012; 55 (05) 1551-1561
- 103 Bajaj JS, O'Leary JG, Reddy KR. , et al; NACSELD. Second infections independently increase mortality in hospitalized patients with cirrhosis: the North American consortium for the study of end-stage liver disease (NACSELD) experience. Hepatology 2012; 56 (06) 2328-2335
- 104 Katoonizadeh A, Laleman W, Verslype C. , et al. Early features of acute-on-chronic alcoholic liver failure: a prospective cohort study. Gut 2010; 59 (11) 1561-1569
- 105 Fiore M, Leone S. Spontaneous fungal peritonitis: epidemiology, current evidence and future prospective. World J Gastroenterol 2016; 22 (34) 7742-7747
- 106 Bajaj JS, Rajender Reddy K, Tandon P. , et al. Prediction of fungal infection development and their impact on survival using the NACSELD cohort. Am J Gastroenterol 2018; 113 (04) 556-563
- 107 Alexopoulou A, Papadopoulos N, Eliopoulos DG. , et al. Increasing frequency of gram-positive cocci and gram-negative multidrug-resistant bacteria in spontaneous bacterial peritonitis. Liver Int 2013; 33 (07) 975-981
- 108 Fernández J, Navasa M, Gómez J. , et al. Bacterial infections in cirrhosis: epidemiological changes with invasive procedures and norfloxacin prophylaxis. Hepatology 2002; 35 (01) 140-148
- 109 Silvestri L, van Saene HKF. Selective decontamination of the digestive tract: an update of the evidence. HSR Proc Intensive Care Cardiovasc Anesth 2012; 4 (01) 21-29
- 110 Sánchez-Ramírez C, Hípola-Escalada S, Cabrera-Santana M. , et al. Long-term use of selective digestive decontamination in an ICU highly endemic for bacterial resistance. Crit Care 2018; 22 (01) 141