Nervenheilkunde 2018; 37(11): 809-817
DOI: 10.1055/s-0038-1675700
Universitätsklinikum Ulm
Georg Thieme Verlag KG Stuttgart · New York

Antisense-Oligonukleotide I

Chemische Modifikationen, Wirkmechanismen und therapeutischer Einsatz bei neurodegenerativen Erkrankungen[*] Antisense oligonucleotides Ichemical modifications, mechanism of action, treatment options in neurodegenerative disorders
C. D. Wurster
1   Universität- und Rehabilitationskliniken Ulm, Neurologische Universitätsklinik, Ulm
,
A. C. Ludolph
1   Universität- und Rehabilitationskliniken Ulm, Neurologische Universitätsklinik, Ulm
,
D. Lehmann
1   Universität- und Rehabilitationskliniken Ulm, Neurologische Universitätsklinik, Ulm
2   Universitätsklinikum Ulm, Klinik für Psychiatrie und Psychotherapie III, Ulm
,
H. Graf
2   Universitätsklinikum Ulm, Klinik für Psychiatrie und Psychotherapie III, Ulm
› Author Affiliations
Further Information

Korrespondenzadresse

Priv.-Doz. Dr. med. Heiko Graf
Universitätsklinikum Ulm
Klinik für Psychiatrie und Psychotherapie III
Leimgrubenweg 12–14, 89073 Ulm
Phone: 0731/50061401   
Fax: 0731 500 61402   

Publication History

eingegangen am: 31 August 2018

angenommen am: 11 September 2018

Publication Date:
30 October 2018 (online)

 

Zusammenfassung

Molekulargenetische Untersuchungen konnten die Pathomechanismen vieler neurodegenerativer Erkrankungen aufklären, jedoch standen lange Zeit keine krankheitsmodifizierenden Therapieoptionen zur Verfügung. Dies änderte sich seit der Einführung von sogenannten Antisense-Oligonukleotiden in die klinische Praxis. Im Jahr 2016 wurden erstmals Antisense-Oligonukleotide zur Behandlung der spinalen Muskelatrophie und der Muskeldystrophie Duchenne zugelassen. In der Entwicklung von Antisense-Oligonukleotiden waren Hürden zu überwinden und chemische Modifikationen notwendig, die deren Einsatz erst möglich machten. In diesem Artikel stellen wir Prinzipien dieser chemischen Modifikationen und Wirkmechanismen von Antisense-Oligonkuleotiden vor. Darüber hinaus geben wir einen Überblick über den aktuellen Stand der Wissenschaft zu verschiedenen Antisense-Oligonukleotiden und fokussieren dabei auf neuromuskuläre und neurodegenerative Erkrankungen wie die spinale Muskelatrophie, die Muskeldystrophie Duchenne, die myotone Dystrophie, Chorea Huntington und die Amyotrophe Lateralsklerose.


#

Summary

Efforts in molecular biology and genetics provided considerable insights into the pathomechanisms of neurodegenerative disorders, but disease-modifying treatment options were scarce for decades. This changed since antisense oligonucleotide strategies could be translated from the bench to the clinic. In the year 2016, two antisense oligonucleotides were approved for the treatment of spinal muscular atrophy and for Duchenne muscular dystrophy. The development of antisense oligonucleotides was challenging and several chemical modifications were necessary to improve their drug-like properties and their successful introduction into clinical practice. In this review, we provide insights into the chemical modifications and the mechanism of action of antisense oligonucleotides. Moreover, we give an overview on several antisense oligonucleotides for the treatment of neurodegenerative or neuromuscular disorders and focus on spinal muscular atrophy, Duchenne muscular dystrophy, myotonic dystrophy, Huntington´s disease and amyotrophic lateral sclerosis.


#

 


#

Interessenkonflikt

Heiko Graf: keine Interessenkonflikte. Diana Lehmann: keine Interessenkonflikte. Claudia Diana Wurster: Beratertätigkeit für die Firma Hoffmann-La Roche; Honorarvorträge für die Firma Biogen sowie Teilnahme an einem AdBoard Meeting der Firma Biogen. Albert Ludolph: Unterstützung für klinische Forschungsprojekte durch AB Science, Biogen Idec, Cytokinetics, GSK, Orion Pharam, Novartis, TauRx Therapeutics Ltd. und TEVA Pharmaceuticals. Honorare als Berater von Mitsubishi, Orion Pharma, Novartis, Teva sowie für lectures fees von Biogen und Ionis sowie als AdBoard-Mitglied von Biogen, Treeway, Hoffmann-La Roche und Novartis.

* Dieser Artikel basiert auf (106)


  • Literatur

  • 1 Evers MM, Toonen LJA, van Roon-Mom WMC. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliv Rev 2015; 87: 90-103.
  • 2 Bennett CF, Baker BF, Pham N, Swayze E, Geary RS. Pharmacology of Antisense Drugs. Annu Rev Pharmacol Toxicol 2017; 57: 81-105.
  • 3 Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 1978; 75: 280-284.
  • 4 Stephenson ML, Zamecnik PC. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci 1978; 75: 285-288.
  • 5 Dagle JM, Weeks DL, Walder JA. Pathways of degradation and mechanism of action of antisense oligonucleotides in Xenopus laevis embryos. Antisense Res Dev 1991; 01: 11-20.
  • 6 Khorkova O, Wahlestedt C. Oligonucleotide therapies for disorders of the nervous system. Nat Biotechnol 2017; 35: 249-263.
  • 7 Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res 2016; 44: 6518-6548.
  • 8 Mansoor M, Melendez AJ. Advances in antisense oligonucleotide development for target identification, validation, and as novel therapeutics. Gene Regul Syst Bio 2008; 2008: 275-295.
  • 9 Kurreck J. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res 2002; 30: 1911-1918.
  • 10 Geary RS, Norris D, Yu R, Bennett CF. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 2015; 87: 46-51.
  • 11 DeVos SL, Miller TM. Antisense Oligonucleotides: Treating Neurodegeneration at the Level of RNA. Neurotherapeutics 2013; 10: 486-497.
  • 12 Schoch KM, Miller TM. Antisense Oligonucleotides: Translation from Mouse Models to Human Neurodegenerative Diseases. Neuron 2017; 94: 1056-1070.
  • 13 Banks W, Farr S, Butt W, Kumar VB, Franko MW, Morley JE. Delivery across the blood-brain barrier of antisense directed against amyloid beta: reversal of learning and memory deficits in mice overexpressing amyloid precursor protein. J Pharmacol Exp Ther 2001; 297: 1113-1121.
  • 14 Farr SA, Erickson MA, Niehoff ML, Banks WA, Morley JE. Central and peripheral administration of antisense oligonucleotide targeting amyloid-β protein precursor improves learning and memory and reduces neuroinflammatory cytokines in Tg2576 (AβPPswe) mice. J Alzheimer’s Dis 2014; 40: 1005-1016.
  • 15 Lee HJ, Boado RJ, Braasch Da, Corey DR, Pardridge WM. Imaging gene expression in the brain in vivo in a transgenic mouse model of Huntington’s disease with an antisense radiopharmaceutical and drug-targeting technology. J Nucl Med 2002; 43: 948-956.
  • 16 Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 1994; 269: 10444-10450.
  • 17 Kozlu S, Caban S, Yerlikaya F, Fernandez-Megia E, Novoa-Carballal R, Riguera R, Yemisci M, Gursoy-Ozdemir Y, Dalkara T, Couvreur P, Capan Y. An aquaporin 4 antisense oligonucleotide loaded, brain targeted nanoparticulate system design. Pharmazie 2014; 69: 340-345.
  • 18 Phillips MI. Antisense inhibition and adeno-associated viral vector delivery for reducing hypertension. Hypertension 1997; 29: 177-187.
  • 19 Cerritelli SM, Crouch RJ. Ribonuclease H: The enzymes in eukaryotes. FEBS J 2009; 276: 1494-1505.
  • 20 Wurster C, Ludolph AC. Therapie der spinalen Muskelatrophie mit dem Antisense-Oligonukleotid Nusinersen TT – Therapy of spinal muscular atrophy with the antisense oligonucleotide nusinersen. Nervenheilkunde 2018; 37: 185-190.
  • 21 Lunn MR, Wang CH. Spinal muscular atrophy. Lancet 2008; 371: 2120-2133.
  • 22 Melki J. et al. Gene for chronic proximal spinal muscular atrophies maps to chromosome 5q. Nature 1990; 344: 767-768.
  • 23 Brzustowicz LM. et al. Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2–13.3. Nature 1990; 344: 540-541.
  • 24 Lefebvre S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995; 80: 155-165.
  • 25 Wirth B, Brichta L, Schrank B, Lochmüller H, Blick S, Baasner A, Heller R. Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum Genet 2006; 119: 422-428.
  • 26 Finkel RS. et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 2016; 388: 3017-3026.
  • 27 Passini MA. et al. Antisense Oligonucleotides Delivered to the Mouse CNS Ameliorate Symptoms of Severe Spinal Muscular Atrophy. Sci Transl Med 2011; 03: 72ra18-72ra18.
  • 28 Hua Y, Sahashi K, Hung G, Rigo F, Passini MA, Bennett CF, Krainer AR. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 2010; 24: 1634-1644.
  • 29 Chiriboga CA, Swoboda KJ, Darras BT, Iannaccone ST, Montes J, De Vivo DC, Norris DA, Bennett CF, Bishop KM. Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology 2016; 86: 890-897.
  • 30 Finkel RS. et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N Engl J Med 2017; 377: 1723-1732.
  • 31 d’Ydewalle C, Ramos DM, Pyles NJ, Ng SY, Gorz M, Pilato CM, Ling K, Kong L, Ward AJ, Rubin LL, Rigo F, Bennett CF, Sumner CJ. The Antisense Transcript SMN-AS1 Regulates SMN Expression and Is a Novel Therapeutic Target for Spinal Muscular Atrophy. Neuron 2017; 93: 66-79.
  • 32 Mendell JR. et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N Engl J Med 2017; 377: 1713-1722.
  • 33 Mendell JR. et al. Evidence-based path to newborn screening for duchenne muscular dystrophy. Ann Neurol 2012; 71: 304-313.
  • 34 Bushby K. et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 2010; 09: 77-93.
  • 35 Flanigan KM. Duchenne and becker muscular dystrophies. Neurol Clin 2014; 32: 671-688.
  • 36 Hoffman EP, Dressman D. Molecular pathophysiology and targeted therapeutics for muscular dystrophy. Trends Pharmacol Sci 2001; 22: 465-470.
  • 37 Nowak KJ, Davies KE. Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep 2004; 05: 872-876.
  • 38 Braun R, Wang Z, Mack DL, Childers MK. Gene therapy for inherited muscle diseases: Where genetics meets rehabilitation medicine. Am J Phys Med Rehabil 2014; 93: S97-S107.
  • 39 Sienkiewicz D, Kulak W, Okurowska-Zawada B, Paszko-Patej G, Kawnik K. Duchenne muscular dystrophy: current cell therapies. Ther Adv Neurol Disord 2015; 08: 166-177.
  • 40 Alter J, Lou F, Rabinowitz A, Yin H, Rosenfeld J, Wilton SD, Partridge TA, Lu QL. Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med 2006; 12: 175-177.
  • 41 Aartsma-Rus A, Janson AAM, Kaman WE, Bremmer-Bout M, den Dunnen TJT, Baas F, van Ommen GJB, van Deutekom JCT. Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. Hum Mol Genet 2003; 12: 907-914.
  • 42 van Deutekom JCT. Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells. Hum Mol Genet 2001; 10: 1547-1554.
  • 43 Heemskerk HA. et al. In vivo comparison of 2-O-methyl phosphorothioate and morpholino antisense oligonucleotides for Duchenne muscular dystrophy exon skipping. J Gene Med 2009; 11: 257-266.
  • 44 Voit T. et al. Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): An exploratory, randomised, placebo-controlled phase 2 study. Lancet Neurol 2014; 13: 987-996.
  • 45 Kole R, Krieg AM. Exon skipping therapy for Duchenne muscular dystrophy. Adv Drug Deliv Rev 2015; 87: 104-107.
  • 46 Arechavala-Gomeza V. et al. Comparative Analysis of Antisense Oligonucleotide Sequences for Targeted Skipping of Exon 51 During Dystrophin PremRNA Splicing in Human Muscle. Hum Gene Ther 2007; 18: 798-810.
  • 47 Kinali M. et al. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 2009; 08: 918-928.
  • 48 Cirak S, Feng L, Anthony K, Arechavala-Gomeza V, Torelli S, Sewry C, Morgan JE, Muntoni F. Restoration of the Dystrophin-associated Glycoprotein Complex After Exon Skipping Therapy in Duchenne Muscular Dystrophy. Mol Ther 2012; 20: 462-467.
  • 49 Mendell JR, Goemans N, Lowes LP, Alfano LN, Berry K, Shao J, Kaye EM, Mercuri E. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann Neurol 2016; 79: 257-271.
  • 50 Aartsma-Rus A, Janson AA, van Ommen G-JB, van Deutekom JC. Antisense-induced exon skipping for duplications in Duchenne muscular dystrophy. BMC Med Genet 2007; 08: 43.
  • 51 Meola G, Cardani R. Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta – Mol Basis Dis 2015; 1852: 594-606.
  • 52 Brook JD. et al. Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3 end of a transcript encoding a protein kinase family member. Cell 1992; 68: 799-808.
  • 53 Fu Y. et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 1992; 255: 1256-1258.
  • 54 Author G. et al. Myotonic Dystrophy Mutation: An Unstable CTG Repeat in the 3 Untranslated Region of the. Source Sci New Ser 1992; 255: 1253-1255.
  • 55 Meola G, Sansone V, Radice S, Skradski S, Ptacek L. A family with an unusual myotonic and myopathic phenotype and no CTG expansion (proximal myotonic myopathy syndrome): A challenge for future molecular studies. Neuromuscul Disord 1996; 06: 143-150.
  • 56 Ricker K, Koch MC, Lehmann-Horn F, Pongratz D, Otto M, Heine R, Moxley RT. Proximal myotonic myopathy: a new dominant disorder with myotonia, muscle weakness, and cataracts. Neurology 1994; 44: 1448-1452.
  • 57 Thornton CA, Griggs RC, Moxley RT. Myotonic dystrophy with no trinucleotide repeat expansion. Ann Neurol 1994; 35: 269-272.
  • 58 Udd B, Krahe R, Wallgren-Pettersson C, Falck B, Kalimo H. Proximal myotonic dystrophy – A family with autosomal dominant muscular dystrophy, cataracts, hearing loss and hypogonadism: Heterogeneity of proximal myotonic syndromes?. Neuromuscul Disord 1997; 07: 217-228.
  • 59 Ranum LP, Rasmussen PF, Benzow Ka, Koob MD, Day JW. Genetic mapping of a second myotonic dystrophy locus. Nat Genet 1998; 19: 196-198.
  • 60 Liquori CL. Myotonic Dystrophy Type 2 Caused by a CCTG Expansion in Intron 1 of ZNF9. Science 2001; 293: 864-867.
  • 61 Day JW. et al. Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum. Neurology 2003; 60: 657-664.
  • 62 Mulders SM. et al. Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proc Natl Acad Sci USA 2009; 106: 13915-13920.
  • 63 Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH, Wentworth BM, Bennett CF, Thornton CA. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 2012; 488: 111-115.
  • 64 Pandey SK. et al. Identification and characterization of modified antisense oligonucleotides targeting DMPK in mice and nonhuman primates for the treatment of myotonic dystrophy type 1. J Pharmacol Exp Ther 2015; 355: 329-340.
  • 65 Thornton C. et al. Study Design of a Phase 1/2a Trial with ISIS-DMPKRx for the Treatment of Myotonic Dystrophy Type 1 (P3.167). Neurology. 2016 86.
  • 66 Dragatsis I, Levine MS, Zeitlin S. Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat Genet 2000; 26: 300-306.
  • 67 Bates GP. et al. Huntington disease. Nat Rev Dis Prim 2015; 01: 15005.
  • 68 Rubinsztein DC. Lessons from animal models of Huntington’s disease. Trends Genet 2002; 18: 202-209.
  • 69 Deyts C, Galan-Rodriguez B, Martin E, Bouveyron N, Roze E, Charvin D, Caboche J, Bétuing S. Dopamine D2 receptor stimulation potentiates polyQHuntingtin-induced mouse striatal neuron dysfunctions via Rho/ROCK-II activation. PLoS One. 2009 04.
  • 70 Kordasiewicz HB, Stanek LM, Wancewicz E V, Mazur C, McAlonis MM, Pytel KA, Artates JW, Weiss A, Cheng SH, Shihabuddin LS, Hung G, Bennett CF, Cleveland DW. Sustained Therapeutic Reversal of Huntington’s Disease by Transient Repression of Huntingtin Synthesis. Neuron 2012; 74: 1031-1044.
  • 71 Østergaard ME. et al. Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS. Nucleic Acids Res 2013; 41: 9634-9650.
  • 72 Rowland L, Shneider N. Amyotrophic Lateral Sclerosis. N Engl J Med 2001; 344: 1688-1700.
  • 73 Zarei S, Carr K, Reiley L, Diaz K, Guerra O, Altamirano P, Pagani W, Lodin D, Orozco G, Chinea A. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int 2015; 06: 171.
  • 74 Brettschneider J. et al. TDP-43 pathology and neuronal loss in amyotrophic lateral sclerosis spinal cord. Acta Neuropathol 2014; 128: 423-437.
  • 75 Logroscino G, Traynor BJ, Hardiman O, Chio A, Mitchell D, Swingler RJ, Millul A, Benn E, Beghi E. Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry 2010; 81: 385-390.
  • 76 Rosenbohm A. et al. Epidemiology of amyotrophic lateral sclerosis in Southern Germany. J Neurol 2017; 264: 749-757.
  • 77 Neumann M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006; 314: 130-133.
  • 78 Brettschneider J. et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 2013; 74: 20-38.
  • 79 Lee EB, Lee VM-Y, Trojanowski JQ. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci. 2011
  • 80 Braak H, Brettschneider J, Ludolph AC, Lee VM, Trojanowski JQ, Del Tredici K. Amyotrophic lateral sclerosis – a model of corticofugal axonal spread. Nat Rev Neurol 2013; 09: 708-714.
  • 81 Majoor-Krakauer D, Willems PJ, Hofman A. Genetic epidemiology of amyotrophic lateral sclerosis. Clin Genet 2003; 63: 83-101.
  • 82 Renton AE, Chiò A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 2014; 17: 17-23.
  • 83 Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362: 59-62.
  • 84 Chen L, Watson C, Morsch M, Cole NJ, Chung RS, Saunders DN, Yerbury JJ, Vine KL. Improving the Delivery of SOD1 Antisense Oligonucleotides to Motor Neurons Using Calcium Phosphate-Lipid Nanoparticles. Front Neurosci 2017; 11: 476.
  • 85 Ajroud-Driss S, Siddique T. Sporadic and hereditary amyotrophic lateral sclerosis (ALS). Biochim Biophys Acta – Mol Basis Dis 2015; 1852: 679-684.
  • 86 Andersen PM, Al-Chalabi A. Clinical genetics of amyotrophic lateral sclerosis: What do we really know?. Nat Rev Neurol 2011; 07: 603-615.
  • 87 Perry JJP, Shin DS, Getzoff ED, Tainer JA. The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta – Proteins Proteomics 2010; 1804: 245-262.
  • 88 Bosco DA. et al Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci 2010; 13: 1396-1403.
  • 89 Saccon RA, Bunton-Stasyshyn RKA, Fisher EMC, Fratta P. Is SOD1 loss of function involved in amyotrophic lateral sclerosis?. Brain 2013; 136: 2342-2358.
  • 90 Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol. 2009 65.
  • 91 Smith RA. et al. Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest 2006; 116: 2290-2296.
  • 92 Miller TM. et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: A phase 1, randomised, first-in-man study. Lancet Neurol 2013; 12: 435-442.
  • 93 DeJesus-Hernandez M. et al. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron 2011; 72: 245-256.
  • 94 Renton AE. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011; 72: 257-268.
  • 95 van Blitterswijk M, DeJesus-Hernandez M, Rademakers R. How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia: can we learn from other noncoding repeat expansion disorders?. Curr Opin Neurol 2012; 25: 689-700.
  • 96 Nassif M, Woehlbier U, Manque PA. The enigmatic role of C9ORF72 in autophagy. Front Neurosci. 2017 11.
  • 97 Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med 2013; 19: 983-997.
  • 98 Ciura S, Lattante S, Le Ber I, Latouche M, Tostivint H, Brice A, Kabashi E. Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis. Ann Neurol 2013; 74: 180-187.
  • 99 Therrien M, Rouleau GA, Dion PA, Parker JA. Deletion of C9ORF72 results in motor neuron degeneration and stress sensitivity in C. elegans. PLoS One. 2013 08.
  • 100 Ling SC, Polymenidou M, Cleveland DW. Converging mechanisms in als and FTD: Disrupted RNA and protein homeostasis. Neuron 2013; 79: 416-438.
  • 101 Mizielinska S, Isaacs AM. C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia. Curr Opin Neurol 2014; 27: 515-523.
  • 102 Donnelly CJ. et al. RNA Toxicity from the ALS/ FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention. Neuron 2013; 80: 415-428.
  • 103 ORourke JG. et al. C9orf72 is required for proper macrophage and microglial function in mice. Science 2016; 351: 1324-1329.
  • 104 Jiang J. et al. Gain of Toxicity from ALS/FTD- Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs. Neuron 2016; 90: 535-550.
  • 105 Becker LA. et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 2017; 544: 367-371.
  • 106 Wurster CD, Ludolph AC. Antisense oligonucleotides in neurological disorders. Ther Adv Neurol Disord 2018; 11: 1-19.

Korrespondenzadresse

Priv.-Doz. Dr. med. Heiko Graf
Universitätsklinikum Ulm
Klinik für Psychiatrie und Psychotherapie III
Leimgrubenweg 12–14, 89073 Ulm
Phone: 0731/50061401   
Fax: 0731 500 61402   

  • Literatur

  • 1 Evers MM, Toonen LJA, van Roon-Mom WMC. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliv Rev 2015; 87: 90-103.
  • 2 Bennett CF, Baker BF, Pham N, Swayze E, Geary RS. Pharmacology of Antisense Drugs. Annu Rev Pharmacol Toxicol 2017; 57: 81-105.
  • 3 Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 1978; 75: 280-284.
  • 4 Stephenson ML, Zamecnik PC. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci 1978; 75: 285-288.
  • 5 Dagle JM, Weeks DL, Walder JA. Pathways of degradation and mechanism of action of antisense oligonucleotides in Xenopus laevis embryos. Antisense Res Dev 1991; 01: 11-20.
  • 6 Khorkova O, Wahlestedt C. Oligonucleotide therapies for disorders of the nervous system. Nat Biotechnol 2017; 35: 249-263.
  • 7 Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res 2016; 44: 6518-6548.
  • 8 Mansoor M, Melendez AJ. Advances in antisense oligonucleotide development for target identification, validation, and as novel therapeutics. Gene Regul Syst Bio 2008; 2008: 275-295.
  • 9 Kurreck J. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res 2002; 30: 1911-1918.
  • 10 Geary RS, Norris D, Yu R, Bennett CF. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 2015; 87: 46-51.
  • 11 DeVos SL, Miller TM. Antisense Oligonucleotides: Treating Neurodegeneration at the Level of RNA. Neurotherapeutics 2013; 10: 486-497.
  • 12 Schoch KM, Miller TM. Antisense Oligonucleotides: Translation from Mouse Models to Human Neurodegenerative Diseases. Neuron 2017; 94: 1056-1070.
  • 13 Banks W, Farr S, Butt W, Kumar VB, Franko MW, Morley JE. Delivery across the blood-brain barrier of antisense directed against amyloid beta: reversal of learning and memory deficits in mice overexpressing amyloid precursor protein. J Pharmacol Exp Ther 2001; 297: 1113-1121.
  • 14 Farr SA, Erickson MA, Niehoff ML, Banks WA, Morley JE. Central and peripheral administration of antisense oligonucleotide targeting amyloid-β protein precursor improves learning and memory and reduces neuroinflammatory cytokines in Tg2576 (AβPPswe) mice. J Alzheimer’s Dis 2014; 40: 1005-1016.
  • 15 Lee HJ, Boado RJ, Braasch Da, Corey DR, Pardridge WM. Imaging gene expression in the brain in vivo in a transgenic mouse model of Huntington’s disease with an antisense radiopharmaceutical and drug-targeting technology. J Nucl Med 2002; 43: 948-956.
  • 16 Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 1994; 269: 10444-10450.
  • 17 Kozlu S, Caban S, Yerlikaya F, Fernandez-Megia E, Novoa-Carballal R, Riguera R, Yemisci M, Gursoy-Ozdemir Y, Dalkara T, Couvreur P, Capan Y. An aquaporin 4 antisense oligonucleotide loaded, brain targeted nanoparticulate system design. Pharmazie 2014; 69: 340-345.
  • 18 Phillips MI. Antisense inhibition and adeno-associated viral vector delivery for reducing hypertension. Hypertension 1997; 29: 177-187.
  • 19 Cerritelli SM, Crouch RJ. Ribonuclease H: The enzymes in eukaryotes. FEBS J 2009; 276: 1494-1505.
  • 20 Wurster C, Ludolph AC. Therapie der spinalen Muskelatrophie mit dem Antisense-Oligonukleotid Nusinersen TT – Therapy of spinal muscular atrophy with the antisense oligonucleotide nusinersen. Nervenheilkunde 2018; 37: 185-190.
  • 21 Lunn MR, Wang CH. Spinal muscular atrophy. Lancet 2008; 371: 2120-2133.
  • 22 Melki J. et al. Gene for chronic proximal spinal muscular atrophies maps to chromosome 5q. Nature 1990; 344: 767-768.
  • 23 Brzustowicz LM. et al. Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2–13.3. Nature 1990; 344: 540-541.
  • 24 Lefebvre S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995; 80: 155-165.
  • 25 Wirth B, Brichta L, Schrank B, Lochmüller H, Blick S, Baasner A, Heller R. Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum Genet 2006; 119: 422-428.
  • 26 Finkel RS. et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 2016; 388: 3017-3026.
  • 27 Passini MA. et al. Antisense Oligonucleotides Delivered to the Mouse CNS Ameliorate Symptoms of Severe Spinal Muscular Atrophy. Sci Transl Med 2011; 03: 72ra18-72ra18.
  • 28 Hua Y, Sahashi K, Hung G, Rigo F, Passini MA, Bennett CF, Krainer AR. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 2010; 24: 1634-1644.
  • 29 Chiriboga CA, Swoboda KJ, Darras BT, Iannaccone ST, Montes J, De Vivo DC, Norris DA, Bennett CF, Bishop KM. Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology 2016; 86: 890-897.
  • 30 Finkel RS. et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N Engl J Med 2017; 377: 1723-1732.
  • 31 d’Ydewalle C, Ramos DM, Pyles NJ, Ng SY, Gorz M, Pilato CM, Ling K, Kong L, Ward AJ, Rubin LL, Rigo F, Bennett CF, Sumner CJ. The Antisense Transcript SMN-AS1 Regulates SMN Expression and Is a Novel Therapeutic Target for Spinal Muscular Atrophy. Neuron 2017; 93: 66-79.
  • 32 Mendell JR. et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N Engl J Med 2017; 377: 1713-1722.
  • 33 Mendell JR. et al. Evidence-based path to newborn screening for duchenne muscular dystrophy. Ann Neurol 2012; 71: 304-313.
  • 34 Bushby K. et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 2010; 09: 77-93.
  • 35 Flanigan KM. Duchenne and becker muscular dystrophies. Neurol Clin 2014; 32: 671-688.
  • 36 Hoffman EP, Dressman D. Molecular pathophysiology and targeted therapeutics for muscular dystrophy. Trends Pharmacol Sci 2001; 22: 465-470.
  • 37 Nowak KJ, Davies KE. Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep 2004; 05: 872-876.
  • 38 Braun R, Wang Z, Mack DL, Childers MK. Gene therapy for inherited muscle diseases: Where genetics meets rehabilitation medicine. Am J Phys Med Rehabil 2014; 93: S97-S107.
  • 39 Sienkiewicz D, Kulak W, Okurowska-Zawada B, Paszko-Patej G, Kawnik K. Duchenne muscular dystrophy: current cell therapies. Ther Adv Neurol Disord 2015; 08: 166-177.
  • 40 Alter J, Lou F, Rabinowitz A, Yin H, Rosenfeld J, Wilton SD, Partridge TA, Lu QL. Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med 2006; 12: 175-177.
  • 41 Aartsma-Rus A, Janson AAM, Kaman WE, Bremmer-Bout M, den Dunnen TJT, Baas F, van Ommen GJB, van Deutekom JCT. Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. Hum Mol Genet 2003; 12: 907-914.
  • 42 van Deutekom JCT. Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells. Hum Mol Genet 2001; 10: 1547-1554.
  • 43 Heemskerk HA. et al. In vivo comparison of 2-O-methyl phosphorothioate and morpholino antisense oligonucleotides for Duchenne muscular dystrophy exon skipping. J Gene Med 2009; 11: 257-266.
  • 44 Voit T. et al. Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): An exploratory, randomised, placebo-controlled phase 2 study. Lancet Neurol 2014; 13: 987-996.
  • 45 Kole R, Krieg AM. Exon skipping therapy for Duchenne muscular dystrophy. Adv Drug Deliv Rev 2015; 87: 104-107.
  • 46 Arechavala-Gomeza V. et al. Comparative Analysis of Antisense Oligonucleotide Sequences for Targeted Skipping of Exon 51 During Dystrophin PremRNA Splicing in Human Muscle. Hum Gene Ther 2007; 18: 798-810.
  • 47 Kinali M. et al. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 2009; 08: 918-928.
  • 48 Cirak S, Feng L, Anthony K, Arechavala-Gomeza V, Torelli S, Sewry C, Morgan JE, Muntoni F. Restoration of the Dystrophin-associated Glycoprotein Complex After Exon Skipping Therapy in Duchenne Muscular Dystrophy. Mol Ther 2012; 20: 462-467.
  • 49 Mendell JR, Goemans N, Lowes LP, Alfano LN, Berry K, Shao J, Kaye EM, Mercuri E. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann Neurol 2016; 79: 257-271.
  • 50 Aartsma-Rus A, Janson AA, van Ommen G-JB, van Deutekom JC. Antisense-induced exon skipping for duplications in Duchenne muscular dystrophy. BMC Med Genet 2007; 08: 43.
  • 51 Meola G, Cardani R. Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta – Mol Basis Dis 2015; 1852: 594-606.
  • 52 Brook JD. et al. Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3 end of a transcript encoding a protein kinase family member. Cell 1992; 68: 799-808.
  • 53 Fu Y. et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 1992; 255: 1256-1258.
  • 54 Author G. et al. Myotonic Dystrophy Mutation: An Unstable CTG Repeat in the 3 Untranslated Region of the. Source Sci New Ser 1992; 255: 1253-1255.
  • 55 Meola G, Sansone V, Radice S, Skradski S, Ptacek L. A family with an unusual myotonic and myopathic phenotype and no CTG expansion (proximal myotonic myopathy syndrome): A challenge for future molecular studies. Neuromuscul Disord 1996; 06: 143-150.
  • 56 Ricker K, Koch MC, Lehmann-Horn F, Pongratz D, Otto M, Heine R, Moxley RT. Proximal myotonic myopathy: a new dominant disorder with myotonia, muscle weakness, and cataracts. Neurology 1994; 44: 1448-1452.
  • 57 Thornton CA, Griggs RC, Moxley RT. Myotonic dystrophy with no trinucleotide repeat expansion. Ann Neurol 1994; 35: 269-272.
  • 58 Udd B, Krahe R, Wallgren-Pettersson C, Falck B, Kalimo H. Proximal myotonic dystrophy – A family with autosomal dominant muscular dystrophy, cataracts, hearing loss and hypogonadism: Heterogeneity of proximal myotonic syndromes?. Neuromuscul Disord 1997; 07: 217-228.
  • 59 Ranum LP, Rasmussen PF, Benzow Ka, Koob MD, Day JW. Genetic mapping of a second myotonic dystrophy locus. Nat Genet 1998; 19: 196-198.
  • 60 Liquori CL. Myotonic Dystrophy Type 2 Caused by a CCTG Expansion in Intron 1 of ZNF9. Science 2001; 293: 864-867.
  • 61 Day JW. et al. Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum. Neurology 2003; 60: 657-664.
  • 62 Mulders SM. et al. Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy. Proc Natl Acad Sci USA 2009; 106: 13915-13920.
  • 63 Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH, Wentworth BM, Bennett CF, Thornton CA. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 2012; 488: 111-115.
  • 64 Pandey SK. et al. Identification and characterization of modified antisense oligonucleotides targeting DMPK in mice and nonhuman primates for the treatment of myotonic dystrophy type 1. J Pharmacol Exp Ther 2015; 355: 329-340.
  • 65 Thornton C. et al. Study Design of a Phase 1/2a Trial with ISIS-DMPKRx for the Treatment of Myotonic Dystrophy Type 1 (P3.167). Neurology. 2016 86.
  • 66 Dragatsis I, Levine MS, Zeitlin S. Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat Genet 2000; 26: 300-306.
  • 67 Bates GP. et al. Huntington disease. Nat Rev Dis Prim 2015; 01: 15005.
  • 68 Rubinsztein DC. Lessons from animal models of Huntington’s disease. Trends Genet 2002; 18: 202-209.
  • 69 Deyts C, Galan-Rodriguez B, Martin E, Bouveyron N, Roze E, Charvin D, Caboche J, Bétuing S. Dopamine D2 receptor stimulation potentiates polyQHuntingtin-induced mouse striatal neuron dysfunctions via Rho/ROCK-II activation. PLoS One. 2009 04.
  • 70 Kordasiewicz HB, Stanek LM, Wancewicz E V, Mazur C, McAlonis MM, Pytel KA, Artates JW, Weiss A, Cheng SH, Shihabuddin LS, Hung G, Bennett CF, Cleveland DW. Sustained Therapeutic Reversal of Huntington’s Disease by Transient Repression of Huntingtin Synthesis. Neuron 2012; 74: 1031-1044.
  • 71 Østergaard ME. et al. Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS. Nucleic Acids Res 2013; 41: 9634-9650.
  • 72 Rowland L, Shneider N. Amyotrophic Lateral Sclerosis. N Engl J Med 2001; 344: 1688-1700.
  • 73 Zarei S, Carr K, Reiley L, Diaz K, Guerra O, Altamirano P, Pagani W, Lodin D, Orozco G, Chinea A. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int 2015; 06: 171.
  • 74 Brettschneider J. et al. TDP-43 pathology and neuronal loss in amyotrophic lateral sclerosis spinal cord. Acta Neuropathol 2014; 128: 423-437.
  • 75 Logroscino G, Traynor BJ, Hardiman O, Chio A, Mitchell D, Swingler RJ, Millul A, Benn E, Beghi E. Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry 2010; 81: 385-390.
  • 76 Rosenbohm A. et al. Epidemiology of amyotrophic lateral sclerosis in Southern Germany. J Neurol 2017; 264: 749-757.
  • 77 Neumann M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006; 314: 130-133.
  • 78 Brettschneider J. et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 2013; 74: 20-38.
  • 79 Lee EB, Lee VM-Y, Trojanowski JQ. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci. 2011
  • 80 Braak H, Brettschneider J, Ludolph AC, Lee VM, Trojanowski JQ, Del Tredici K. Amyotrophic lateral sclerosis – a model of corticofugal axonal spread. Nat Rev Neurol 2013; 09: 708-714.
  • 81 Majoor-Krakauer D, Willems PJ, Hofman A. Genetic epidemiology of amyotrophic lateral sclerosis. Clin Genet 2003; 63: 83-101.
  • 82 Renton AE, Chiò A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 2014; 17: 17-23.
  • 83 Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362: 59-62.
  • 84 Chen L, Watson C, Morsch M, Cole NJ, Chung RS, Saunders DN, Yerbury JJ, Vine KL. Improving the Delivery of SOD1 Antisense Oligonucleotides to Motor Neurons Using Calcium Phosphate-Lipid Nanoparticles. Front Neurosci 2017; 11: 476.
  • 85 Ajroud-Driss S, Siddique T. Sporadic and hereditary amyotrophic lateral sclerosis (ALS). Biochim Biophys Acta – Mol Basis Dis 2015; 1852: 679-684.
  • 86 Andersen PM, Al-Chalabi A. Clinical genetics of amyotrophic lateral sclerosis: What do we really know?. Nat Rev Neurol 2011; 07: 603-615.
  • 87 Perry JJP, Shin DS, Getzoff ED, Tainer JA. The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta – Proteins Proteomics 2010; 1804: 245-262.
  • 88 Bosco DA. et al Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci 2010; 13: 1396-1403.
  • 89 Saccon RA, Bunton-Stasyshyn RKA, Fisher EMC, Fratta P. Is SOD1 loss of function involved in amyotrophic lateral sclerosis?. Brain 2013; 136: 2342-2358.
  • 90 Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol. 2009 65.
  • 91 Smith RA. et al. Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest 2006; 116: 2290-2296.
  • 92 Miller TM. et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: A phase 1, randomised, first-in-man study. Lancet Neurol 2013; 12: 435-442.
  • 93 DeJesus-Hernandez M. et al. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron 2011; 72: 245-256.
  • 94 Renton AE. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011; 72: 257-268.
  • 95 van Blitterswijk M, DeJesus-Hernandez M, Rademakers R. How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia: can we learn from other noncoding repeat expansion disorders?. Curr Opin Neurol 2012; 25: 689-700.
  • 96 Nassif M, Woehlbier U, Manque PA. The enigmatic role of C9ORF72 in autophagy. Front Neurosci. 2017 11.
  • 97 Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med 2013; 19: 983-997.
  • 98 Ciura S, Lattante S, Le Ber I, Latouche M, Tostivint H, Brice A, Kabashi E. Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis. Ann Neurol 2013; 74: 180-187.
  • 99 Therrien M, Rouleau GA, Dion PA, Parker JA. Deletion of C9ORF72 results in motor neuron degeneration and stress sensitivity in C. elegans. PLoS One. 2013 08.
  • 100 Ling SC, Polymenidou M, Cleveland DW. Converging mechanisms in als and FTD: Disrupted RNA and protein homeostasis. Neuron 2013; 79: 416-438.
  • 101 Mizielinska S, Isaacs AM. C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia. Curr Opin Neurol 2014; 27: 515-523.
  • 102 Donnelly CJ. et al. RNA Toxicity from the ALS/ FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention. Neuron 2013; 80: 415-428.
  • 103 ORourke JG. et al. C9orf72 is required for proper macrophage and microglial function in mice. Science 2016; 351: 1324-1329.
  • 104 Jiang J. et al. Gain of Toxicity from ALS/FTD- Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs. Neuron 2016; 90: 535-550.
  • 105 Becker LA. et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 2017; 544: 367-371.
  • 106 Wurster CD, Ludolph AC. Antisense oligonucleotides in neurological disorders. Ther Adv Neurol Disord 2018; 11: 1-19.