Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000068.xml
Semin intervent Radiol 2018; 35(05): 443-452
DOI: 10.1055/s-0038-1676360
DOI: 10.1055/s-0038-1676360
Review Article
Drug-Eluting Balloons and Drug-Eluting Stents in the Treatment of Peripheral Vascular Disease
Further Information
Publication History
Publication Date:
05 February 2019 (online)
Abstract
In the last 20 years, peripheral artery disease (PAD) has been increasingly recognized as a significant cause of morbidity and mortality in the United States. The endovascular treatment of PAD has seen a marked rise as minimally invasive techniques and devices have been refined. Two newer devices, drug-eluting stents and drug-eluting balloons, are on the forefront of the battle against limb loss from PAD. This review focuses on the data backing the use of drug-eluting technologies for use in the peripheral arterial system.
-
References
- 1 Rocha-Singh KJ, Jaff MR, Crabtree TR, Bloch DA, Ansel G. ; VIVA Physicians, Inc. Performance goals and endpoint assessments for clinical trials of femoropopliteal bare nitinol stents in patients with symptomatic peripheral arterial disease. Catheter Cardiovasc Interv 2007; 69 (06) 910-919
- 2 Laird JR. Limitations of percutaneous transluminal angioplasty and stenting for the treatment of disease of the superficial femoral and popliteal arteries. J Endovasc Ther 2006; 13 (Suppl. 02) II30-II40
- 3 Rocha-Singh KJ, Bosiers M, Schultz G, Jaff MR, Mehta M, Matsumura JS. ; Durability II Investigators. A single stent strategy in patients with lifestyle limiting claudication: 3-year results from the Durability II trial. Catheter Cardiovasc Interv 2015; 86 (01) 164-170
- 4 Scheinert D, Scheinert S, Sax J. , et al. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J Am Coll Cardiol 2005; 45 (02) 312-315
- 5 Kohchi K, Takebayashi S, Block PC, Hiroki T, Nobuyoshi M. Arterial changes after percutaneous transluminal coronary angioplasty: results at autopsy. J Am Coll Cardiol 1987; 10 (03) 592-599
- 6 Post MJ, Borst C, Kuntz RE. The relative importance of arterial remodeling compared with intimal hyperplasia in lumen renarrowing after balloon angioplasty. A study in the normal rabbit and the hypercholesterolemic Yucatan micropig. Circulation 1994; 89 (06) 2816-2821
- 7 Gray WA, Granada JF. Drug-coated balloons for the prevention of vascular restenosis. Circulation 2010; 121 (24) 2672-2680
- 8 Goldman B, Blanke H, Wolinsky H. Influence of pressure on permeability of normal and diseased muscular arteries to horseradish peroxidase. A new catheter approach. Atherosclerosis 1987; 65 (03) 215-225
- 9 Wilensky RL, March KL, Gradus-Pizlo I. , et al. Regional and arterial localization of radioactive microparticles after local delivery by unsupported or supported porous balloon catheters. Am Heart J 1995; 129 (05) 852-859
- 10 Scheller B, Speck U, Abramjuk C, Bernhardt U, Böhm M, Nickenig G. Paclitaxel balloon coating, a novel method for prevention and therapy of restenosis. Circulation 2004; 110 (07) 810-814
- 11 Granada JF, Stenoien M, Buszman PP. , et al. Mechanisms of tissue uptake and retention of paclitaxel-coated balloons: impact on neointimal proliferation and healing. Open Heart 2014; 1 (01) e000117
- 12 Escárcega RO, Waksman R. Overview of the 2014 Food and Drug Administration Circulatory System Devices Panel meeting regarding the Lutonix® drug coated balloon. Cardiovasc Revasc Med 2014; 15 (08) 402-407
- 13 Krishnan P, Faries P, Niazi K. , et al. Stellarex drug-coated balloon for treatment of femoropopliteal disease: twelve-month outcomes from the randomized ILLUMENATE pivotal and pharmacokinetic studies. Circulation 2017; 136 (12) 1102-1113
- 14 Dror M, Trescony P. Releasable coatings on balloon catheters. U.S. Patent No. 5,102,402. 7 Apr. 1992
- 15 Bunte MC, Shishehbor MH. Next generation endovascular therapies in peripheral artery disease. Prog Cardiovasc Dis 2018; 60 (06) 593-599
- 16 Tepe G, Zeller T, Albrecht T. , et al. Local delivery of paclitaxel to inhibit restenosis during angioplasty of the leg. N Engl J Med 2008; 358 (07) 689-699
- 17 Werk M, Langner S, Reinkensmeier B. , et al. Inhibition of restenosis in femoropopliteal arteries: paclitaxel-coated versus uncoated balloon: femoral paclitaxel randomized pilot trial. Circulation 2008; 118 (13) 1358-1365
- 18 Werk M, Albrecht T, Meyer DR. , et al. Paclitaxel-coated balloons reduce restenosis after femoro-popliteal angioplasty: evidence from the randomized PACIFIER trial. Circ Cardiovasc Interv 2012; 5 (06) 831-840
- 19 Schneider PA, Laird JR, Tepe G. , et al; IN.PACT SFA Trial Investigators. Treatment effect of drug-coated balloons is durable to 3 years in the femoropopliteal arteries: long-term results of the IN. PACT SFA randomized trial. Circ Cardiovasc Interv 2018; 11 (01) e005891
- 20 Rosenfield K, Jaff MR, White CJ. , et al; LEVANT 2 Investigators. Trial of a paclitaxel-coated balloon for femoropopliteal artery disease. N Engl J Med 2015; 373 (02) 145-153
- 21 Thieme M, Von Bilderling P, Paetzel C, Karnabatidis D, Perez Delgado J, Lichtenberg M. ; Lutonix Global SFA Registry Investigators. The 24-month results of the Lutonix Global SFA Registry: worldwide experience with Lutonix drug-coated balloon. JACC Cardiovasc Interv 2017; 10 (16) 1682-1690
- 22 Schroeder H, Werner M, Meyer D-R, Reimer P, Krüger K, Jaff MR, Brodmann M. Low-dose paclitaxel-coated versus uncoated percutaneous transluminal balloon angioplasty for femoropopliteal peripheral artery disease: 1-year results of the ILLUMENATE European randomized clinical trial. Circulation 2017; 135 (23) 2227-2236
- 23 Mittleider D, Russell E. Peripheral atherectomy: applications and techniques. Tech Vasc Interv Radiol 2016; 19 (02) 123-135
- 24 Cioppa A, Stabile E, Popusoi G. , et al. Combined treatment of heavy calcified femoro-popliteal lesions using directional atherectomy and a paclitaxel coated balloon: One-year single centre clinical results. Cardiovasc Revasc Med 2012; 13 (04) 219-223
- 25 Zeller T, Langhoff R, Rocha-Singh KJ. , et al; DEFINITIVE AR Investigators. Directional atherectomy followed by a paclitaxel-coated balloon to inhibit restenosis and maintain vessel patency: twelve-month results of the DEFINITIVE AR Study. Circ Cardiovasc Interv 2017; 10 (09) e004848
- 26 Farb A, Kolodgie FD, Hwang J-Y. , et al. Extracellular matrix changes in stented human coronary arteries. Circulation 2004; 110 (08) 940-947
- 27 Stabile E, Virga V, Salemme L. , et al. Drug-eluting balloon for treatment of superficial femoral artery in-stent restenosis. J Am Coll Cardiol 2012; 60 (18) 1739-1742
- 28 Grotti S, Liistro F, Angioli P. , et al. Paclitaxel-eluting balloon vs standard angioplasty to reduce restenosis in diabetic patients with in-stent restenosis of the superficial femoral and proximal popliteal arteries: three-year results of the DEBATE-ISR study. J Endovasc Ther 2016; 23 (01) 52-57
- 29 Wu R, Li Z, Wang M, Chang G, Yao C, Wang S. Paclitaxel-coated versus uncoated balloon angioplasty for femoropopliteal artery in-stent restenosis. Int J Surg 2017; 42: 72-82
- 30 Brodmann M, Keirse K, Scheinert D. , et al; IN.PACT Global Study Investigators; PACT Global Study De Novo In-Stent Restenosis Imaging Cohort. Drug-coated balloon treatment for femoropopliteal artery disease: the IN. PACT global study de novo in-stent restenosis imaging cohort. JACC Cardiovasc Interv 2017; 10 (20) 2113-2123
- 31 van den Berg JC, Pedrotti M, Canevascini R, Chimchila Chevili S, Giovannacci L, Rosso R. In-stent restenosis: mid-term results of debulking using excimer laser and drug-eluting balloons: sustained benefit?. J Invasive Cardiol 2014; 26 (07) 333-337
- 32 Beschorner U, Krankenberg H, Scheinert D. , et al. Rotational and aspiration atherectomy for infrainguinal in-stent restenosis. Vasa 2013; 42 (02) 127-133
- 33 Sixt S, Carpio Cancino OG, Treszl A. , et al. Drug-coated balloon angioplasty after directional atherectomy improves outcome in restenotic femoropopliteal arteries. J Vasc Surg 2013; 58 (03) 682-686
- 34 Fowkes FGR, Rudan D, Rudan I. , et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet 2013; 382 (9901): 1329-1340
- 35 Mustapha JA, Finton SM, Diaz-Sandoval LJ, Saab FA, Miller LE. Percutaneous transluminal angioplasty in patients with infrapopliteal arterial disease: systematic review and meta-analysis. Circ Cardiovasc Interv 2016; 9 (05) e003468
- 36 Zeller T, Baumgartner I, Scheinert D. , et al; IN.PACT DEEP Trial Investigators. Drug-eluting balloon versus standard balloon angioplasty for infrapopliteal arterial revascularization in critical limb ischemia: 12-month results from the IN.PACT DEEP randomized trial. J Am Coll Cardiol 2014; 64 (15) 1568-1576
- 37 Steiner S, Schmidt A, Bausback Y. , et al. Single-center experience with Lutonix drug-coated balloons in infrapopliteal arteries. J Endovasc Ther 2016; 23 (03) 417-423
- 38 Thieme M, Lichtenberg M, Brodmann M, Cioppa A, Scheinert D. Lutonix® 014 DCB global Below the Knee Registry Study: interim 6-month outcomes. J Cardiovasc Surg (Torino) 2018; 59 (02) 232-236
- 39 Dake MD, Ansel GM, Jaff MR. , et al; Zilver PTX Investigators. Durable clinical effectiveness with paclitaxel-eluting stents in the femoropopliteal artery: 5-year results of the Zilver PTX randomized trial. Circulation 2016; 133 (15) 1472-1483 , discussion 1483
- 40 Wilson GJ, Nakazawa G, Schwartz RS. , et al. Comparison of inflammatory response after implantation of sirolimus- and paclitaxel-eluting stents in porcine coronary arteries. Circulation 2009; 120 (02) 141-149 , 1–2
- 41 Zhang J, Xu X, Kong J. , et al. Systematic review and meta-analysis of drug-eluting balloon and stent for infrapopliteal artery revascularization. Vasc Endovascular Surg 2017; 51 (02) 72-83
- 42 Zhao HQ, Nikanorov A, Virmani R, Schwartz LB. Inhibition of experimental neointimal hyperplasia and neoatherosclerosis by local, stent-mediated delivery of everolimus. J Vasc Surg 2012; 56 (06) 1680-1688
- 43 Ellis SG, Stone GW, Cox DA. , et al; TAXUS IV Investigators. Long-term safety and efficacy with paclitaxel-eluting stents: 5-year final results of the TAXUS IV clinical trial (TAXUS IV-SR: Treatment of De Novo Coronary Disease Using a Single Paclitaxel-Eluting Stent). JACC Cardiovasc Interv 2009; 2 (12) 1248-1259
- 44 Weisz G, Leon MB, Holmes Jr DR. , et al. Five-year follow-up after sirolimus-eluting stent implantation results of the SIRIUS (Sirolimus-Eluting Stent in De-Novo Native Coronary Lesions) Trial. J Am Coll Cardiol 2009; 53 (17) 1488-1497
- 45 Duda SH, Bosiers M, Lammer J. , et al. Drug-eluting and bare nitinol stents for the treatment of atherosclerotic lesions in the superficial femoral artery: long-term results from the SIROCCO trial. J Endovasc Ther 2006; 13 (06) 701-710
- 46 Lammer J, Bosiers M, Zeller T. , et al. First clinical trial of nitinol self-expanding everolimus-eluting stent implantation for peripheral arterial occlusive disease. J Vasc Surg 2011; 54 (02) 394-401
- 47 Dake MD, Scheinert D, Tepe G. , et al; Zilver PTX Single-Arm Study Investigators. Nitinol stents with polymer-free paclitaxel coating for lesions in the superficial femoral and popliteal arteries above the knee: twelve-month safety and effectiveness results from the Zilver PTX single-arm clinical study. J Endovasc Ther 2011; 18 (05) 613-623
- 48 Iida O, Takahara M, Soga Y. , et al; ZEPHYR Investigators. 1-year results of the ZEPHYR registry (Zilver PTX for the femoral artery and proximal popliteal artery): predictors of restenosis. JACC Cardiovasc Interv 2015; 8 (08) 1105-1112
- 49 Jaff MR. What's a doctor to do? Balloon, stents, drugs, drills, and treadmills: are we closer to the optimal algorithm?. JACC: Cardiovascular Interventions 2015; 8 (08) 1113-4
- 50 Ishihara T, Takahara M, Iida O. , et al; ZEPHYR Investigators. Comparable 2-year restenosis rates following subintimal and intraluminal drug-eluting stent implantation for femoropopliteal chronic total occlusion. J Endovasc Ther 2016; 23 (06) 889-895
- 51 Yokoi H, Ohki T, Kichikawa K. , et al. Zilver PTX post-market surveillance study of paclitaxel-eluting stents for treating femoropopliteal artery disease in Japan: 12-month results. JACC Cardiovasc Interv 2016; 9 (03) 271-277
- 52 Zeller T, Dake MD, Tepe G. , et al. Treatment of femoropopliteal in-stent restenosis with paclitaxel-eluting stents. JACC Cardiovasc Interv 2013; 6 (03) 274-281
- 53 Ott I, Cassese S, Groha P. , et al. Randomized comparison of paclitaxel-eluting balloon and stenting versus plain balloon plus stenting versus directional atherectomy for femoral artery disease (ISAR-STATH). Circulation 2017; 135 (23) 2218-2226
- 54 Müller-Hülsbeck S, Keirse K, Zeller T, Schroë H, Diaz-Cartelle J. Twelve-month results from the MAJESTIC trial of the Eluvia paclitaxel-eluting stent for treatment of obstructive femoropopliteal disease. J Endovasc Ther 2016; 23 (05) 701-707
- 55 Gasior P, Cheng Y, Valencia AF. , et al. Impact of fluoropolymer-based paclitaxel delivery on neointimal proliferation and vascular healing: a comparative peripheral drug-eluting stent study in the familial hypercholesterolemic swine model of femoral restenosis. Circ Cardiovasc Interv 2017; 10 (05) 10
- 56 Müller-Hülsbeck S, Keirse K, Zeller T, Schroë H, Diaz-Cartelle J. Long-term results from the MAJESTIC trial of the Eluvia paclitaxel-eluting stent for femoropopliteal treatment: 3-year follow-up. Cardiovasc Intervent Radiol 2017; 40 (12) 1832-1838
- 57 van Overhagen H, Spiliopoulos S, Tsetis D. Below-the-knee interventions. Cardiovasc Intervent Radiol 2013; 36 (02) 302-311
- 58 Adam DJ, Beard JD, Cleveland T. , et al; BASIL Trial Participants. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet 2005; 366 (9501): 1925-1934
- 59 Albers M, Romiti M, Brochado-Neto FC, De Luccia N, Pereira CAB. Meta-analysis of popliteal-to-distal vein bypass grafts for critical ischemia. J Vasc Surg 2006; 43 (03) 498-503
- 60 Romiti M, Albers M, Brochado-Neto FC, Durazzo AES, Pereira CAB, De Luccia N. Meta-analysis of infrapopliteal angioplasty for chronic critical limb ischemia. J Vasc Surg 2008; 47 (05) 975-981
- 61 Söderström MI, Arvela EM, Korhonen M. , et al. Infrapopliteal percutaneous transluminal angioplasty versus bypass surgery as first-line strategies in critical leg ischemia: a propensity score analysis. Ann Surg 2010; 252 (05) 765-773
- 62 Siablis D, Kitrou PM, Spiliopoulos S, Katsanos K, Karnabatidis D. Paclitaxel-coated balloon angioplasty versus drug-eluting stenting for the treatment of infrapopliteal long-segment arterial occlusive disease: the IDEAS randomized controlled trial. JACC Cardiovasc Interv 2014; 7 (09) 1048-1056
- 63 Cui K, Lyu S, Song X. , et al. Drug-eluting balloon versus bare-mental stent and drug-eluting stent for de novo coronary artery disease: a systematic review and meta-analysis of 14 randomized controlled trials. PLoS One 2017; 12 (04) e0176365
- 64 Martens JM, Knippenberg B, Vos J-A, de Vries JP, Hansen BE, van Overhagen H. ; PADI Trial Group. Update on PADI trial: percutaneous transluminal angioplasty and drug-eluting stents for infrapopliteal lesions in critical limb ischemia. J Vasc Surg 2009; 50 (03) 687-689
- 65 Katsanos K, Karnabatidis D, Diamantopoulos A, Spiliopoulos S, Siablis D. Cost-effectiveness analysis of infrapopliteal drug-eluting stents. Cardiovasc Intervent Radiol 2013; 36 (01) 90-97
- 66 Spreen MI, Martens JM, Hansen BE. , et al. Percutaneous transluminal angioplasty and drug-eluting stents for infrapopliteal lesions in critical limb ischemia (PADI) trial. Circ Cardiovasc Interv 2016; 9 (02) e002376
- 67 Spreen MI, Martens JM, Knippenberg B. , et al. Long‐term follow‐up of the PADI trial: percutaneous transluminal angioplasty versus drug‐eluting stents for infrapopliteal lesions in critical limb ischemia. J Am Heart Assoc 2017; 6 (04) e004877
- 68 Rastan A, Brechtel K, Krankenberg H. , et al. Sirolimus-eluting stents for treatment of infrapopliteal arteries reduce clinical event rate compared to bare-metal stents: long-term results from a randomized trial. J Am Coll Cardiol 2012; 60 (07) 587-591
- 69 Siablis D, Karnabatidis D, Katsanos K. , et al. Infrapopliteal application of sirolimus-eluting versus bare metal stents for critical limb ischemia: analysis of long-term angiographic and clinical outcome. J Vasc Interv Radiol 2009; 20 (09) 1141-1150
- 70 Scheinert D, Katsanos K, Zeller T. , et al; ACHILLES Investigators. A prospective randomized multicenter comparison of balloon angioplasty and infrapopliteal stenting with the sirolimus-eluting stent in patients with ischemic peripheral arterial disease: 1-year results from the ACHILLES trial. J Am Coll Cardiol 2012; 60 (22) 2290-2295
- 71 Bosiers M, Scheinert D, Peeters P. , et al. Randomized comparison of everolimus-eluting versus bare-metal stents in patients with critical limb ischemia and infrapopliteal arterial occlusive disease. J Vasc Surg 2012; 55 (02) 390-398
- 72 Falkowski A, Poncyljusz W, Wilk G, Szczerbo-Trojanowska M. The evaluation of primary stenting of sirolimus-eluting versus bare-metal stents in the treatment of atherosclerotic lesions of crural arteries. Eur Radiol 2009; 19 (04) 966-974
- 73 Antoniou GA, Chalmers N, Kanesalingham K. , et al. Meta-analysis of outcomes of endovascular treatment of infrapopliteal occlusive disease with drug-eluting stents. J Endovasc Ther 2013; 20 (02) 131-144
- 74 Fusaro M, Cassese S, Ndrepepa G. , et al. Drug-eluting stents for revascularization of infrapopliteal arteries: updated meta-analysis of randomized trials. JACC Cardiovasc Interv 2013; 6 (12) 1284-1293
- 75 Katsanos K, Spiliopoulos S, Diamantopoulos A, Karnabatidis D, Sabharwal T, Siablis D. Systematic review of infrapopliteal drug-eluting stents: a meta-analysis of randomized controlled trials. Cardiovasc Intervent Radiol 2013; 36 (03) 645-658