J Knee Surg 2019; 32(02): 127-133
DOI: 10.1055/s-0038-1676378
Special Focus Section
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Knee Cell-Based Cartilage Restoration

Adam M. Pickett
1   Department of Orthopedics, John A. Feagin Sports Medicine Fellowship, United States Military Academy, Keller Army Community Hospital, West Point, New York
,
Dana T. Hensley Jr.
1   Department of Orthopedics, John A. Feagin Sports Medicine Fellowship, United States Military Academy, Keller Army Community Hospital, West Point, New York
› Author Affiliations
Further Information

Publication History

03 October 2018

28 October 2018

Publication Date:
10 January 2019 (online)

Abstract

As our patients become more physically active at all ages, the incidence of injuries to articular cartilage is increasing causing significant pain and disability. The intrinsic healing response of articular cartilage is poor because of its limited vascular supply and capacity for chondrocyte division. Nonsurgical management for the focal cartilage lesion is successful in the majority of patients. Those patients who fail conservative management may be candidates for a cartilage reparative or reconstructive procedure. The type of treatment available depends on a multitude of lesion-specific and patient-specific variables. First-line therapies for isolated cartilage lesions have demonstrated good clinical results in the correct patient, but typically repair cartilage with fibrocartilage, which has inferior stiffness, inferior resilience, and poorer wear characteristics. Advances in cell-based cartilage restoration have provided the surgeon a means to address focal cartilage lesions utilizing mesenchymal stem cells, chondrocytes, and biomimetic scaffolds to restore hyaline cartilage.

Note

The views and opinions expressed in this article are those of the authors and do not reflect the official policy of the Department of the Army, the Department of Defense, or the U.S. Government.


 
  • References

  • 1 Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 1997; 13 (04) 456-460
  • 2 Arøen A, Løken S, Heir S. , et al. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 2004; 32 (01) 211-215
  • 3 Linden B. Osteochondritis dissecans of the femoral condyles: a long-term follow-up study. J Bone Joint Surg Am 1977; 59 (06) 769-776
  • 4 Messner K, Maletius W. The long-term prognosis for severe damage to weight-bearing cartilage in the knee: a 14-year clinical and radiographic follow-up in 28 young athletes. Acta Orthop Scand 1996; 67 (02) 165-168
  • 5 Alford JW, Cole BJ. Cartilage restoration, part 1: basic science, historical perspective, patient evaluation, and treatment options. Am J Sports Med 2005; 33 (02) 295-306
  • 6 Lohmander LS, Dahlberg L, Ryd L, Heinegård D. Increased levels of proteoglycan fragments in knee joint fluid after injury. Arthritis Rheum 1989; 32 (11) 1434-1442
  • 7 Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 1982; 64 (03) 460-466
  • 8 Mow VC, Ratcliffe A, Rosenwasser MP, Buckwalter JA. Experimental studies on repair of large osteochondral defects at a high weight bearing area of the knee joint: a tissue engineering study. J Biomech Eng 1991; 113 (02) 198-207
  • 9 Hunziker EB, Quinn TM. Surgical removal of articular cartilage leads to loss of chondrocytes from cartilage bordering the wound edge. J Bone Joint Surg Am 2003; 85-A (Suppl. 02) 85-92
  • 10 Goldberg VM, Caplan AI. Biologic restoration of articular surfaces. Instr Course Lect 1999; 48: 623-627
  • 11 Furukawa T, Eyre DR, Koide S, Glimcher MJ. Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg Am 1980; 62 (01) 79-89
  • 12 Nehrer S, Spector M, Minas T. Histologic analysis of tissue after failed cartilage repair procedures. Clin Orthop Relat Res 1999; (365) 149-162
  • 13 Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br 1961; 43-B: 752-757
  • 14 Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 2003; 85-A (Suppl. 02) 58-69
  • 15 Mainil-Varlet P, Aigner T, Brittberg M. , et al; International Cartilage Repair Society. Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J Bone Joint Surg Am 2003; 85-A (Suppl. 02) 45-57
  • 16 Farr J, Cole B, Dhawan A, Kercher J, Sherman S. Clinical cartilage restoration: evolution and overview. Clin Orthop Relat Res 2011; 469 (10) 2696-2705
  • 17 Lee SJ, Aadalen KJ, Malaviya P. , et al. Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee. Am J Sports Med 2006; 34 (08) 1334-1344
  • 18 Rue J-PH, Yanke AB, Busam ML, McNickle AG, Cole BJ. Prospective evaluation of concurrent meniscus transplantation and articular cartilage repair: minimum 2-year follow-up. Am J Sports Med 2008; 36 (09) 1770-1778
  • 19 Gomoll AH, Kang RW, Chen AL, Cole BJ. Triad of cartilage restoration for unicompartmental arthritis treatment in young patients: meniscus allograft transplantation, cartilage repair and osteotomy. J Knee Surg 2009; 22 (02) 137-141
  • 20 Ficat RP, Ficat C, Gedeon P, Toussaint JB. Spongialization: a new treatment for diseased patellae. Clin Orthop Relat Res 1979; (144) 74-83
  • 21 Johnson LL. Arthroscopic abrasion arthroplasty historical and pathologic perspective: present status. Arthroscopy 1986; 2 (01) 54-69
  • 22 Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 2001; ;(391, Suppl): S362-S369
  • 23 McNickle AG, Provencher MT, Cole BJ. Overview of existing cartilage repair technology. Sports Med Arthrosc Rev 2008; 16 (04) 196-201
  • 24 Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. Instr Course Lect 2005; 54: 465-480
  • 25 Buckwalter JA, Mow VC, Ratcliffe A. Restoration of injured or degenerated articular cartilage. J Am Acad Orthop Surg 1994; 2 (04) 192-201
  • 26 Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 2003; 19 (05) 477-484
  • 27 Mithoefer K, Williams III RJ, Warren RF. , et al. The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am 2005; 87 (09) 1911-1920
  • 28 Steadman JR, Briggs KK, Matheny LM, Guillet A, Hanson CM, Willimon SC. Outcomes following microfracture of full-thickness articular cartilage lesions of the knee in adolescent patients. J Knee Surg 2015; 28 (02) 145-150
  • 29 Kreuz PC, Erggelet C, Steinwachs MR. , et al. Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger?. Arthroscopy 2006; 22 (11) 1180-1186
  • 30 Knutsen G, Drogset JO, Engebretsen L. , et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 2007; 89 (10) 2105-2112
  • 31 Steadman JR, Hanson CM, Briggs KK, Matheny LM, James EW, Guillet A. Outcomes after knee microfracture of chondral defects in alpine ski racers. J Knee Surg 2014; 27 (05) 407-410
  • 32 Mithoefer K, Steadman RJ. Microfracture in football (soccer) players: a case series of professional athletes and systematic review. Cartilage 2012; 3 (1, Suppl): 18S-24S
  • 33 Mardones R, Jofré CM, Minguell JJ. Cell therapy and tissue engineering approaches for cartilage repair and/or regeneration. Int J Stem Cells 2015; 8 (01) 48-53
  • 34 Fortier LA, Potter HG, Rickey EJ. , et al. Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J Bone Joint Surg Am 2010; 92 (10) 1927-1937
  • 35 Nejadnik H, Hui JH, Feng Choong EP, Tai B-C, Lee EH. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med 2010; 38 (06) 1110-1116
  • 36 Chubinskaya S, Merrihew C, Cs-Szabo G. , et al. Human articular chondrocytes express osteogenic protein-1. J Histochem Cytochem 2000; 48 (02) 239-250
  • 37 Klein-Nulend J, Louwerse RT, Heyligers IC. , et al. Osteogenic protein (OP-1, BMP-7) stimulates cartilage differentiation of human and goat perichondrium tissue in vitro. J Biomed Mater Res 1998; 40 (04) 614-620
  • 38 Klein-Nulend J, Semeins CM, Mulder JW. , et al. Stimulation of cartilage differentiation by osteogenic protein-1 in cultures of human perichondrium. Tissue Eng 1998; 4 (03) 305-313
  • 39 Lee CSD, Watkins E, Burnsed OA, Schwartz Z, Boyan BD. Tailoring adipose stem cell trophic factor production with differentiation medium components to regenerate chondral defects. Tissue Eng Part A 2013; 19 (11-12): 1451-1464
  • 40 Skowroński J, Skowroński R, Rutka M. Large cartilage lesions of the knee treated with bone marrow concentrate and collagen membrane--results. Ortop Traumatol Rehabil 2013; 15 (01) 69-76
  • 41 Enea D, Cecconi S, Calcagno S, Busilacchi A, Manzotti S, Gigante A. One-step cartilage repair in the knee: collagen-covered microfracture and autologous bone marrow concentrate. A pilot study. Knee 2015; 22 (01) 30-35
  • 42 Williams III RJ, Ranawat AS, Potter HG, Carter T, Warren RF. Fresh stored allografts for the treatment of osteochondral defects of the knee. J Bone Joint Surg Am 2007; 89 (04) 718-726
  • 43 McCulloch PC, Kang RW, Sobhy MH, Hayden JK, Cole BJ. Prospective evaluation of prolonged fresh osteochondral allograft transplantation of the femoral condyle: minimum 2-year follow-up. Am J Sports Med 2007; 35 (03) 411-420
  • 44 Ghazavi MT, Pritzker KP, Davis AM, Gross AE. Fresh osteochondral allografts for post-traumatic osteochondral defects of the knee. J Bone Joint Surg Br 1997; 79 (06) 1008-1013
  • 45 Chu CR, Convery FR, Akeson WH, Meyers M, Amiel D. Articular cartilage transplantation. Clinical results in the knee. Clin Orthop Relat Res 1999; (360) 159-168
  • 46 Friedlaender GE, Horowitz MC. Immune responses to osteochondral allografts: nature and significance. Orthopedics 1992; 15 (10) 1171-1175
  • 47 Friedlaender GE, Strong DM, Sell KW. Studies on the antigenicity of bone. I. Freeze-dried and deep-frozen bone allografts in rabbits. J Bone Joint Surg Am 1976; 58 (06) 854-858
  • 48 Friedlaender GE, Strong DM, Sell KW. Studies on the antigenicity of bone. II. Donor-specific anti-HLA antibodies in human recipients of freeze-dried allografts. J Bone Joint Surg Am 1984; 66 (01) 107-112
  • 49 Langer F, Gross AE. Immunogenicity of allograft articular cartilage. J Bone Joint Surg Am 1974; 56 (02) 297-304
  • 50 Farr J, Cole BJ, Sherman S, Karas V. Particulated articular cartilage: CAIS and DeNovo NT. J Knee Surg 2012; 25 (01) 23-29
  • 51 Smeriglio P, Lai JH, Dhulipala L. , et al. Comparative potential of juvenile and adult human articular chondrocytes for cartilage tissue formation in three-dimensional biomimetic hydrogels. Tissue Eng Part A 2015; 21 (1-2): 147-155
  • 52 Liu H, Zhao Z, Clarke RB, Gao J, Garrett IR, Margerrison EE. Enhanced tissue regeneration potential of juvenile articular cartilage. Am J Sports Med 2013; 41 (11) 2658-2667
  • 53 Frisbie DD, Lu Y, Kawcak CE, DiCarlo EF, Binette F, McIlwraith CW. In vivo evaluation of autologous cartilage fragment-loaded scaffolds implanted into equine articular defects and compared with autologous chondrocyte implantation. Am J Sports Med 2009; 37 (01) (Suppl. 01) 71S-80S
  • 54 Lu Y, Dhanaraj S, Wang Z. , et al. Minced cartilage without cell culture serves as an effective intraoperative cell source for cartilage repair. J Orthop Res 2006; 24 (06) 1261-1270
  • 55 Bonner KF, Daner W, Yao JQ. 2-year postoperative evaluation of a patient with a symptomatic full-thickness patellar cartilage defect repaired with particulated juvenile cartilage tissue. J Knee Surg 2010; 23 (02) 109-114
  • 56 Farr J, Tabet SK, Margerrison E, Cole BJ. Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage: a 2-year prospective study. Am J Sports Med 2014; 42 (06) 1417-1425
  • 57 Tompkins M, Hamann JC, Diduch DR. , et al. Preliminary results of a novel single-stage cartilage restoration technique: particulated juvenile articular cartilage allograft for chondral defects of the patella. Arthroscopy 2013; 29 (10) 1661-1670
  • 58 Buckwalter JA, Bowman GN, Albright JP, Wolf BR, Bollier M. Clinical outcomes of patellar chondral lesions treated with juvenile particulated cartilage allografts. Iowa Orthop J 2014; 34: 44-49
  • 59 Peterson L. Articular cartilage injuries treated with autologous chondrocyte transplantation in the human knee. Acta Orthop Belg 1996; 62 (Suppl. 01) 196-200
  • 60 Goyal D, Goyal A, Keyhani S, Lee EH, Hui JHP. Evidence-based status of second- and third-generation autologous chondrocyte implantation over first generation: a systematic review of level I and II studies. Arthroscopy 2013; 29 (11) 1872-1878
  • 61 Haddo O, Mahroof S, Higgs D. , et al. The use of chondrogide membrane in autologous chondrocyte implantation. Knee 2004; 11 (01) 51-55
  • 62 Steinwachs M. New technique for cell-seeded collagen-matrix-supported autologous chondrocyte transplantation. Arthroscopy 2009; 25 (02) 208-211
  • 63 Peterson L, Vasiliadis HS, Brittberg M, Lindahl A. Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 2010; 38 (06) 1117-1124
  • 64 Cole BJ, DeBerardino T, Brewster R. , et al. Outcomes of autologous chondrocyte implantation in study of the treatment of articular repair (STAR) patients with osteochondritis dissecans. Am J Sports Med 2012; 40 (09) 2015-2022
  • 65 Micheli LJ, Browne JE, Erggelet C. , et al. Autologous chondrocyte implantation of the knee: multicenter experience and minimum 3-year follow-up. Clin J Sport Med 2001; 11 (04) 223-228
  • 66 Minas T, Von Keudell A, Bryant T, Gomoll AH. The John Insall Award: a minimum 10-year outcome study of autologous chondrocyte implantation. Clin Orthop Relat Res 2014; 472 (01) 41-51
  • 67 Peterson L, Minas T, Brittberg M, Nilsson A, Sjögren-Jansson E, Lindahl A. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 2000; (374) 212-234
  • 68 Pestka JM, Bode G, Salzmann G, Südkamp NP, Niemeyer P. Clinical outcome of autologous chondrocyte implantation for failed microfracture treatment of full-thickness cartilage defects of the knee joint. Am J Sports Med 2012; 40 (02) 325-331
  • 69 Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T. Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med 2009; 37 (05) 902-908
  • 70 Zaslav K, Cole B, Brewster R. , et al; STAR Study Principal Investigators. A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee: results of the Study of the Treatment of Articular Repair (STAR) clinical trial. Am J Sports Med 2009; 37 (01) 42-55
  • 71 Gomoll AH, Probst C, Farr J, Cole BJ, Minas T. Use of a type I/III bilayer collagen membrane decreases reoperation rates for symptomatic hypertrophy after autologous chondrocyte implantation. Am J Sports Med 2009; 37 (01) (Suppl. 01) 20S-23S
  • 72 Samuelson EM, Brown DE. Cost-effectiveness analysis of autologous chondrocyte implantation: a comparison of periosteal patch versus type I/III collagen membrane. Am J Sports Med 2012; 40 (06) 1252-1258
  • 73 Bartlett W, Skinner JA, Gooding CR. , et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 2005; 87 (05) 640-6455