Subscribe to RSS
DOI: 10.1055/s-0038-1676926
Osteopetrose
Eine heterogene Krankheit mit erhöhter KnochendichteOsteopetrosisA heterogenous disease of increased bone densityPublication History
Eingereicht:
21 August 2018
Angenommen:
02 September 2018
Publication Date:
10 January 2019 (online)
Zusammenfassung
Unter der Diagnose Osteopetrose wird eine heterogene Gruppe von seltenen monogenetischen Knochenerkrankungen zusammengefasst, die sich durch eine reduzierte Osteoklasten-Aktivität, eine gesteigerte Knochenmasse und eine gesteigerte Knochenbrüchigkeit auszeichnet. Die Osteopetrosen werden verursacht durch Mutationen in verschiedenen Genen, die in der Osteoklastogenese oder Osteoklasten-Funktion involviert sind. Durch den Verlust der Knochenresorption werden Knochenumbau und -neubildung beeinträchtigt, wodurch sich die Qualität und Architektur des Knochengewebes verschlechtert. Häufige klinische Zeichen sind Osteosklerose, Knochendeformitäten, hämatologische Insuffizienzen durch Verengung der Knochenmarkräume, Sehstörungen durch Verengung der Foramina nervi optici und andere neurologische Störungen. Bis auf eine X-chromosomale Form sind alle infantilen schweren Osteopetrosen autosomal rezessiv vererbt. Die rezessiven Formen verlaufen gewöhnlich ohne Behandlung tödlich im Säuglings- oder Kindesalter, wobei allerdings selten mildere klinische Verläufe als sog. Intermediäre Osteopetrose vorkommen. Die dominante Form ist assoziiert mit Mutationen im CLCN7-Gen und verläuft in der Regel milder. Die meisten schweren Osteopetrosen können durch eine allogene hämatopoetische Stammzelltransplantation (HSZT) behandelt werden, sofern sie Osteoklasten-autonome Ursachen haben und nicht mit einer primären neurologischen Komponente verbunden sind.
Summary
The diagnosis osteopetrosis comprises a heterogenous group of rare monogenetic bone diseases with the common features of reduced osteoclast activity, increased bone mass and high bone fragility. Osteopetroses are caused by mutation in a variety of genes involved in osteoclastogenesis or osteoclast function. Loss of bone resorption prevents bone remodeling and impaired bone quality causing pathological fractures. The clinical manifestation is rather heterogenous, but common clinical signs are increased bone density in X-rays, bone deformities, haematological insufficiencies due to narrowed bone marrow cavities, visual impairment due to the compression of nervi optici and other neurological symptoms. The diseases are autosomal, with only one extremely rare form which show X-chromosomal inheritance. Recessive osteopetroses are usually lethal in infancy or early childhood, with rarely occurring milder forms clinically named intermediate osteopetroses. Dominant osteopetrosis is caused by mutations in the CLCN7 gene and usually shows a benign clinical course with rare exceptions clinically resembling intermediate osteopetrosis with a reduced quality of life and sometimes also reduced life expectancy. Severe osteopetroses caused by osteoclast autonomous defects can be treated by hematopoietic stem cell transplantation (HSCT). Patients should be treated by this invasive procedure as soon as possible to prevent severe disabilities and sequelae. Also some patients with intermediate osteopetroses may be candidates for HSCT but neither Osteopetrosis due to deficiency of the pro-osteoclastogenic cytokine RANKL nor neurodegenerative osteopetroses caused by all mutation in OSTM1 and about half of the mutation in CLCN7 are suitable for HSCT. Novel therapeutic strategies are necessary to treat these forms.
-
Literatur
- 1 Bonafe L, Cormier-Daire V, Hall C, Lachman R, Mortier G, Mundlos S. et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A. 2015
- 2 Benichou OD, Laredo JD, de Vernejoul MC. Type II autosomal dominant osteopetrosis (Albers-Schonberg disease): clinical and radiological manifestations in 42 patients. Bone 2000; 26 (01) 87-93.
- 3 Villa A, Guerrini MM, Cassani B, Pangrazio A, Sobacchi C. Infantile malignant, autosomal recessive osteopetrosis: the rich and the poor. Calcif Tissue Int 2009; 84 (01) 1-12.
- 4 Waguespack SG, Hui SL, Dimeglio LA, Econs MJ. Autosomal dominant osteopetrosis: clinical severity and natural history of 94 subjects with a chloride channel 7 gene mutation. J Clin Endocrinol Metab 2007; 92 (03) 771-778.
- 5 Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 2013; 09 (09) 522-536.
- 6 Malinin NL, Zhang L, Choi J, Ciocea A, Razorenova O, Ma YQ. et al. A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nat Med 2009; 15 (03) 313-318.
- 7 Kornak U, Mundlos S. Genetic disorders of the skeleton: a developmental approach. Am J Hum Genet 2003; 73 (03) 447-474.
- 8 Cleiren E, Benichou O, Van Hul E, Gram J, Bollerslev J, Singer FR. et al. Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet 2001; 10 (25) 2861-2867.
- 9 Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A. et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 2001; 104 (02) 205-215.
- 10 Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP. et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 2000; 25 (03) 343-346.
- 11 Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T. et al. Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet 2000; 09 (13) 2059-2063.
- 12 Schinke T, Schilling AF, Baranowsky A, Seitz S, Marshall RP, Linn T. et al. Impaired gastric acidification negatively affects calcium homeostasis and bone mass. Nat Med 2009; 15 (06) 674-681.
- 13 Chalhoub N, Benachenhou N, Rajapurohitam V, Pata M, Ferron M, Frattini A. et al. Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med 2003; 09 (04) 399-406.
- 14 Aker M, Rouvinski A, Hashavia S, Ta-Shma A, Shaag A, Zenvirt S. et al. An SNX10 mutation causes malignant osteopetrosis of infancy. J Med Genet 2012; 49 (04) 221-226.
- 15 Pangrazio A, Fasth A, Sbardellati A, Orchard PJ, Kasow KA, Raza J. et al. SNX10 mutations define a subgroup of human autosomal recessive osteopetrosis with variable clinical severity. J Bone Miner Res 2013; 28 (05) 1041-1049.
- 16 Van Wesenbeeck L, Odgren PR, Coxon FP, Frattini A, Moens P, Perdu B. et al. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest 2007; 117 (04) 919-930.
- 17 Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE. Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci U S A 1983; 80 (09) 2752-2756.
- 18 Crazzolara R, Maurer K, Schulze H, Zieger B, Zustin J, Schulz AS. A new mutation in the KINDLIN-3 gene ablates integrin-dependent leukocyte, platelet, and osteoclast function in a patient with leukocyte adhesion deficiency-III. Pediatr Blood Cancer 2015; 62 (09) 1677-1679.
- 19 Wada T, Nakashima T, Hiroshi N, Penninger JM. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 2006; 12 (01) 17-25.
- 20 Sobacchi C, Frattini A, Guerrini MM, Abinun M, Pangrazio A, Susani L. et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet 2007; 39 (08) 960-962.
- 21 Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS, Pangrazio A. et al. Human osteoclastpoor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet 2008; 83 (01) 64-76.
- 22 Pangrazio A, Cassani B, Guerrini MM, Crockett JC, Marrella V, Zammataro L. et al. RANK-dependent autosomal recessive osteopetrosis: characterization of five new cases with novel mutations. J Bone Miner Res 2012; 27 (02) 342-351.
- 23 Doffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A. et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 2001; 27 (03) 277-85.
- 24 Nelson DL. NEMO, NFkappaB signaling and incontinentia pigmenti. Curr Opin Genet Dev 2006; 16 (03) 282-288.
- 25 Coccia PF, Krivit W, Cervenka J, Clawson C, Kersey JH, Kim TH. et al. Successful bone-marrow transplantation for infantile malignant osteopetrosis. N Engl J Med 1980; 302 (13) 701-708.
- 26 Teti A, Schulz A. Haematopoietic stem cell transplantation in autosomal recessive osteopetrosis Chapter 15. In: Stem Cells and Bone Diseases 2013; 267-288.
- 27 Gerritsen EJ, Vossen JM, Fasth A, Friedrich W, Morgan G, Padmos A. et al. Bone marrow transplantation for autosomal recessive osteopetrosis. A report from the Working Party on Inborn Errors of the European Bone Marrow Transplantation Group. J Pediatr 1994; 125 (6 Pt 1): 896-902.
- 28 Driessen GJ, Gerritsen EJ, Fischer A, Fasth A, Hop WC, Veys P. et al. Long-term outcome of haematopoietic stem cell transplantation in autosomal recessive osteopetrosis: an EBMT report. Bone Marrow Transplant 2003; 32 (07) 657-663.
- 29 Schulz AS, Classen CF, Mihatsch WA, Sigl-Kraetzig M, Wiesneth M, Debatin KM. et al. HLA-haploidentical blood progenitor cell transplantation in osteopetrosis. Blood 2002; 99 (09) 3458-3460.
- 30 Natsheh J, Drozdinsky G, Simanovsky N, Lamdan R, Erlich O, Gorelik N. et al. Improved Outcomes of Hematopoietic Stem Cell Transplantation in Patients With Infantile Malignant Osteopetrosis Using Fludarabine-Based Conditioning. Pediatr Blood Cancer 2016; 63 (03) 535-540.
- 31 Steward CG, Pellier I, Mahajan A, Ashworth MT, Stuart AG, Fasth A. et al. Severe pulmonary hypertension: a frequent complication of stem cell transplantation for malignant infantile osteopetrosis. Br J Haematol 2004; 124 (01) 63-71.
- 32 Corbacioglu S, Honig M, Lahr G, Stohr S, Berry G, Friedrich W. et al. Stem cell transplantation in children with infantile osteopetrosis is associated with a high incidence of VOD, which could be prevented with defibrotide. Bone Marrow Transplant 2006; 38 (08) 547-553.
- 33 Sobacchi C, Villa A, Schulz A, Kornak U. CLCN7-Related Osteopetrosis. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al. editors. GeneReviews((R)). Seattle (WA): 1993
- 34 Key Jr. LL, Ries WL, Rodriguiz RM, Hatcher HC. Recombinant human interferon gamma therapy for osteopetrosis. J Pediatr 1992; 121 (01) 119-124.
- 35 Stella I, Vinchon M, Guerreschi P, De Berranger E, Bouacha I. Case update on cranial osteopetrosis: which is the role of the neurosurgeon?. Childs Nerv Syst 2017; 33 (12) 2181-2186.
- 36 Strauss A, Furlan I, Steinmann S, Buchholz B, Kremens B, Rossig C. et al. Unmistakable Morphology? Infantile Malignant Osteopetrosis Resembling Juvenile Myelomonocytic Leukemia in Infants. J Pediatr 2015; 167 (02) 486-488.
- 37 Del Fattore A, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone 2008; 42 (01) 19-29.
- 38 Teti A, Econs MJ. Osteopetroses, emphasizing potential approaches to treatment. Bone 2017; 102: 50-59.
- 39 Moscatelli I, Thudium CS, Flores C, Schulz A, Askmyr M, Gudmann NS. et al. Lentiviral gene transfer of TCIRG1 into peripheral blood CD34(+) cells restores osteoclast function in infantile malignant osteopetrosis. Bone 2013; 57 (01) 1-9.
- 40 Neri T, Muggeo S, Paulis M, Caldana ME, Crisafulli L, Strina D. et al. Targeted Gene Correction in Osteopetrotic-Induced Pluripotent Stem Cells for the Generation of Functional Osteoclasts. Stem Cell Reports 2015; 05 (04) 558-568.