J Knee Surg 2020; 33(07): 673-677
DOI: 10.1055/s-0039-1685146
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Relationship of the Posterior Condylar Line and the Transepicondylar Axis: A CT-Based Evaluation

David W. Fitz
1   Department of Orthopaedic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
,
Daniel J. Johnson
1   Department of Orthopaedic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
,
Matthew J. Hartwell
1   Department of Orthopaedic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
,
Ryan Sullivan
1   Department of Orthopaedic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
,
Tyler J. Keller
1   Department of Orthopaedic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
,
David W. Manning
1   Department of Orthopaedic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
› Author Affiliations
Further Information

Publication History

15 November 2018

18 February 2019

Publication Date:
08 April 2019 (online)

Abstract

Posterior condylar referencing, a common method for determining femoral axial orientation during total knee arthroplasty (TKA), relies upon an assumed consistent relationship between the posterior condylar line (PCL) and the transepicondylar axis (TEA) of 3 degrees rotation. A total of 3,010 computed tomography (CT) scans and three-dimension (3D)-reconstructions for presurgical creation of patient-matched TKA instrumentation were analyzed. Demographic data and five anthropometric measurements (hip–knee angle [HKA], distal femoral angle [DFA], proximal tibial angle [PTA], tibial slope [TS], and PCL–TEA relationship) were recorded for each scan. A logistic regression model was fit to assess interaction between the PCL–TEA relationship and demographic and radiological variables. The mean (standard deviation [SD]) PCL–TEA was +2.9 degrees (0.8 degree). The range varied between +0.5 and +16.5 degrees. In 2,758 knees (91.6%), the PCL–TEA was within 3 ± 1 degrees, whereas 252 knees (8.4%) fell outside this range. There were no significant demographic or anthropometric differences between those knees with PCL–TEA relationship between 3 ± 1 degrees and those falling outside that range. The posterior condyles of diseased knees undergoing TKA can be reliably used to indirectly reference the TEA of the distal femur with an error of only 1 degree in 92% of patients.

 
  • References

  • 1 Incavo SJ, Wild JJ, Coughlin KM, Beynnon BD. Early revision for component malrotation in total knee arthroplasty. Clin Orthop Relat Res 2007; 458 (458) 131-136
  • 2 Moreland JR. Mechanisms of failure in total knee arthroplasty. Clin Orthop Relat Res 1988; (226) 49-64
  • 3 Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM. Insall Award paper. Why are total knee arthroplasties failing today?. Clin Orthop Relat Res 2002; (404) 7-13
  • 4 Anouchi YS, Whiteside LA, Kaiser AD, Milliano MT. The effects of axial rotational alignment of the femoral component on knee stability and patellar tracking in total knee arthroplasty demonstrated on autopsy specimens. Clin Orthop Relat Res 1993; (287) 170-177
  • 5 Victor J. Rotational alignment of the distal femur: a literature review. Orthop Traumatol Surg Res 2009; 95 (05) 365-372
  • 6 Vanbiervliet J, Bellemans J, Verlinden C. , et al. The influence of malrotation and femoral component material on patellofemoral wear during gait. J Bone Joint Surg Br 2011; 93 (10) 1348-1354
  • 7 Berger RA, Crossett LS, Jacobs JJ, Rubash HE. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 1998; (356) 144-153
  • 8 Berger RA, Rubash HE, Seel MJ, Thompson WH, Crossett LS. Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop Relat Res 1993; (286) 40-47
  • 9 Moyad TF, Hughes RE, Urquhart A. “Grand piano sign,” a marker for proper femoral component rotation during total knee arthroplasty. Am J Orthop 2011; 40 (07) 348-352
  • 10 Tew M, Waugh W. Tibiofemoral alignment and the results of knee replacement. J Bone Joint Surg Br 1985; 67 (04) 551-556
  • 11 Kinzel V, Ledger M, Shakespeare D. Can the epicondylar axis be defined accurately in total knee arthroplasty?. Knee 2005; 12 (04) 293-296
  • 12 Matziolis G, Krocker D, Weiss U, Tohtz S, Perka C. A prospective, randomized study of computer-assisted and conventional total knee arthroplasty. Three-dimensional evaluation of implant alignment and rotation. J Bone Joint Surg Am 2007; 89 (02) 236-243
  • 13 Churchill DL, Incavo SJ, Johnson CC, Beynnon BD. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res 1998; (356) 111-118
  • 14 Kobayashi H, Akamatsu Y, Kumagai K. , et al. The surgical epicondylar axis is a consistent reference of the distal femur in the coronal and axial planes. Knee Surg Sports Traumatol Arthrosc 2014; 22 (12) 2947-2953
  • 15 Miller MC, Berger RA, Petrella AJ, Karmas A, Rubash HE. Optimizing femoral component rotation in total knee arthroplasty. Clin Orthop Relat Res 2001; (392) 38-45
  • 16 Newbern DG, Faris PM, Ritter MA, Keating EM, Meding JB, Berend ME. A clinical comparison of patellar tracking using the transepicondylar axis and the posterior condylar axis. J Arthroplasty 2006; 21 (08) 1141-1146
  • 17 Jenny JY, Boeri C. Low reproducibility of the intra-operative measurement of the transepicondylar axis during total knee replacement. Acta Orthop Scand 2004; 75 (01) 74-77
  • 18 Parratte S, Blanc G, Boussemart T, Ollivier M, Le Corroller T, Argenson JN. Rotation in total knee arthroplasty: no difference between patient-specific and conventional instrumentation. Knee Surg Sports Traumatol Arthrosc 2013; 21 (10) 2213-2219
  • 19 Paternostre F, Schwab PE, Thienpont E. The combined Whiteside's and posterior condylar line as a reliable reference to describe axial distal femoral anatomy in patient-specific instrument planning. Knee Surg Sports Traumatol Arthrosc 2014; 22 (12) 3054-3059
  • 20 van der Linden-van der Zwaag HM, Valstar ER, van der Molen AJ, Nelissen RG. Transepicondylar axis accuracy in computer assisted knee surgery: a comparison of the CT-based measured axis versus the CAS-determined axis. Comput Aided Surg 2008; 13 (04) 200-206
  • 21 Whiteside LA, Arima J. The anteroposterior axis for femoral rotational alignment in valgus total knee arthroplasty. Clin Orthop Relat Res 1995; (321) 168-172
  • 22 Wraighte PJ, Sikand M, Livesley PJ. Intra- and inter-observer variation during femoral jig rotational alignment in knee arthroplasty. Arch Orthop Trauma Surg 2011; 131 (09) 1283-1286
  • 23 Poilvache PL, Insall JN, Scuderi GR, Font-Rodriguez DE. Rotational landmarks and sizing of the distal femur in total knee arthroplasty. Clin Orthop Relat Res 1996; (331) 35-46
  • 24 Nagamine R, Miura H, Inoue Y. , et al. Reliability of the anteroposterior axis and the posterior condylar axis for determining rotational alignment of the femoral component in total knee arthroplasty. J Orthop Sci 1998; 3 (04) 194-198
  • 25 Siston RA, Patel JJ, Goodman SB, Delp SL, Giori NJ. The variability of femoral rotational alignment in total knee arthroplasty. J Bone Joint Surg Am 2005; 87 (10) 2276-2280
  • 26 Victor J, Van Doninck D, Labey L, Innocenti B, Parizel PM, Bellemans J. How precise can bony landmarks be determined on a CT scan of the knee?. Knee 2009; 16 (05) 358-365
  • 27 Victor J, Van Doninck D, Labey L, Van Glabbeek F, Parizel P, Bellemans J. A common reference frame for describing rotation of the distal femur: a ct-based kinematic study using cadavers. J Bone Joint Surg Br 2009; 91 (05) 683-690
  • 28 Hungerford DS, Kenna RV. Preliminary experience with a total knee prosthesis with porous coating used without cement. Clin Orthop Relat Res 1983; (176) 95-107
  • 29 Lustig S, Lavoie F, Selmi TA, Servien E, Neyret P. Relationship between the surgical epicondylar axis and the articular surface of the distal femur: an anatomic study. Knee Surg Sports Traumatol Arthrosc 2008; 16 (07) 674-682
  • 30 Griffin FM, Math K, Scuderi GR, Insall JN, Poilvache PL. Anatomy of the epicondyles of the distal femur: MRI analysis of normal knees. J Arthroplasty 2000; 15 (03) 354-359
  • 31 Griffin FM, Insall JN, Scuderi GR. The posterior condylar angle in osteoarthritic knees. J Arthroplasty 1998; 13 (07) 812-815
  • 32 Pagnano MW, Hanssen AD. Varus tibial joint line obliquity: a potential cause of femoral component malrotation. Clin Orthop Relat Res 2001; (392) 68-74
  • 33 Thienpont E, Schwab PE, Paternostre F, Koch P. Rotational alignment of the distal femur: anthropometric measurements with CT-based patient-specific instruments planning show high variability of the posterior condylar angle. Knee Surg Sports Traumatol Arthrosc 2014; 22 (12) 2995-3002
  • 34 Mantas JP, Bloebaum RD, Skedros JG, Hofmann AA. Implications of reference axes used for rotational alignment of the femoral component in primary and revision knee arthroplasty. J Arthroplasty 1992; 7 (04) 531-535
  • 35 Arima J, Whiteside LA, McCarthy DS, White SE. Femoral rotational alignment, based on the anteroposterior axis, in total knee arthroplasty in a valgus knee. A technical note. J Bone Joint Surg Am 1995; 77 (09) 1331-1334
  • 36 Akagi M, Matsusue Y, Mata T. , et al. Effect of rotational alignment on patellar tracking in total knee arthroplasty. Clin Orthop Relat Res 1999; (366) 155-163
  • 37 Moon YW, Seo JG, Lim SJ, Yang JH. Variability in femoral component rotation reference axes measured during navigation-assisted total knee arthroplasty using gap technique. J Arthroplasty 2010; 25 (02) 238-243
  • 38 Siston RA, Cromie MJ, Gold GE. , et al. Averaging different alignment axes improves femoral rotational alignment in computer-navigated total knee arthroplasty. J Bone Joint Surg Am 2008; 90 (10) 2098-2104
  • 39 Wai Hung CL, Wai Pan Y, Kwong Yuen C, Hon Bong L, Lei Sha LW, Ho Man SW. Interobserver and intraobserver error in distal femur transepicondylar axis measurement with computed tomography. J Arthroplasty 2009; 24 (01) 96-100
  • 40 Patel AR, Talati RK, Yaffe MA, McCoy BW, Stulberg SD. Femoral component rotation in total knee arthroplasty: an MRI-based evaluation of our options. J Arthroplasty 2014; 29 (08) 1666-1670
  • 41 Koch PP, Müller D, Pisan M, Fucentese SF. Radiographic accuracy in TKA with a CT-based patient-specific cutting block technique. Knee Surg Sports Traumatol Arthrosc 2013; 21 (10) 2200-2205
  • 42 Meric G, Gracitelli GC, Aram LJ, Swank ML, Bugbee WD. Variability in distal femoral anatomy in patients undergoing total knee arthroplasty: measurements on 13,546 computed tomography scans. J Arthroplasty 2015; 30 (10) 1835-1838
  • 43 Won YY, Cui WQ, Baek MH, Yun TB, Han SH. An additional reference axis for determining rotational alignment of the femoral component in total knee arthroplasty. J Arthroplasty 2007; 22 (07) 1049-1053
  • 44 Luyckx T, Zambianchi F, Catani F, Bellemans J, Victor J. Coronal alignment is a predictor of the rotational geometry of the distal femur in the osteo-arthritic knee. Knee Surg Sports Traumatol Arthrosc 2013; 21 (10) 2331-2337
  • 45 Suter T, Zanetti M, Schmid M, Romero J. Reproducibility of measurement of femoral component rotation after total knee arthroplasty using computer tomography. J Arthroplasty 2006; 21 (05) 744-748
  • 46 Paternostre F, Schwab PE, Thienpont E. The difference between weight-bearing and non-weight-bearing alignment in patient-specific instrumentation planning. Knee Surg Sports Traumatol Arthrosc 2014; 22 (03) 674-679
  • 47 Asada S, Akagi M, Matsushita T, Hashimoto K, Mori S, Hamanishi C. Effects of cartilage remnants of the posterior femoral condyles on femoral component rotation in varus knee osteoarthritis. Knee 2012; 19 (03) 185-189
  • 48 Fujii T, Kondo M, Tomari K, Kadoya Y, Tanaka Y. Posterior condylar cartilage may distort rotational alignment of the femoral component based on posterior condylar axis in total knee arthroplasty. Surg Radiol Anat 2012; 34 (07) 633-638