Semin Thromb Hemost 2019; 45(07): 695-707
DOI: 10.1055/s-0039-1687889
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Molecular Diagnosis of Inherited Coagulation and Bleeding Disorders

José María Bastida
1   Department of Hematology, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
,
Rocío Benito
2   IBSAL, IBMCC, CIC, Universidad de Salamanca-CSIC, Salamanca, Spain
,
María Luisa Lozano
3   Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
,
Ana Marín-Quilez
2   IBSAL, IBMCC, CIC, Universidad de Salamanca-CSIC, Salamanca, Spain
,
Kamila Janusz
2   IBSAL, IBMCC, CIC, Universidad de Salamanca-CSIC, Salamanca, Spain
,
Marta Martín-Izquierdo
2   IBSAL, IBMCC, CIC, Universidad de Salamanca-CSIC, Salamanca, Spain
,
Jesús Hernández-Sánchez
2   IBSAL, IBMCC, CIC, Universidad de Salamanca-CSIC, Salamanca, Spain
,
Veronica Palma-Barqueros
3   Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
,
Jesús María Hernández-Rivas
1   Department of Hematology, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
2   IBSAL, IBMCC, CIC, Universidad de Salamanca-CSIC, Salamanca, Spain
,
José Rivera*
3   Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
,
José Ramón González-Porras*
1   Department of Hematology, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
› Author Affiliations
Further Information

Publication History

Publication Date:
30 April 2019 (online)

Abstract

Diagnosis of inherited bleeding disorders (IBDs) remains challenging, especially in the case of inherited platelet disorders, due to the heterogeneity of the clinical and laboratory phenotype, the limited specificity of platelet function tests, and the large number of potential culprit genes. Unraveling the underlying molecular defect provides the definitive diagnosis of IBDs, facilitating prognosis and clinical care, which are especially important for severe clinical syndromes and those that may be associated with an increased risk of malignancy. Until recently, Sanger sequencing of candidate genes has been the only method of molecular diagnosis, but this approach is time-consuming and costly and requires phenotype-based identification of any obvious candidate gene(s). Nowadays, high-throughput sequencing (HTS) allows the simultaneous and rapid investigation of multiple genes at a manageable cost. This HTS technology that includes targeted sequencing of prespecified genes, whole-exome sequencing, or whole-genome sequencing, is revolutionizing the genetic diagnosis of human diseases. Through its extensive implementation in research and clinical practice, HTS is rapidly improving the molecular characterization of IBDs. However, despite the availability of this powerful approach, many patients still do not receive a diagnosis. As IBDs are complex and rare diseases, development of more advanced laboratory assays, improvements in bioinformatic pipelines, and the formation of multidisciplinary teams are encouraged to advance our understanding of IBDs.

* Both authors have contributed to the manuscript in similar way.


Supplementary Material

 
  • References

  • 1 Quiroga T, Goycoolea M, Panes O. , et al. High prevalence of bleeders of unknown cause among patients with inherited mucocutaneous bleeding. A prospective study of 280 patients and 299 controls. Haematologica 2007; 92 (03) 357-365
  • 2 Blanchette VS, Key NS, Ljung LR, Manco-Johnson MJ, van den Berg HM, Srivastava A. ; Subcommittee on Factor VIII, Factor IX and Rare Coagulation Disorders of the Scientific and Standardization Committee of the International Society on Thrombosis and Hemostasis. Definitions in hemophilia: communication from the SSC of the ISTH. J Thromb Haemost 2014; 12 (11) 1935-1939
  • 3 Gresele P, Bury L, Falcinelli E. Inherited platelet function disorders: algorithms for phenotypic and genetic investigation. Semin Thromb Hemost 2016; 42 (03) 292-305
  • 4 Bastida Bermejo JM, Hernández-Rivas JM, González-Porras JR. Novel approaches for diagnosing inherited platelet disorders. Med Clin (Barc) 2017; 148 (02) 71-77
  • 5 Hayward CPM. How I investigate for bleeding disorders. Int J Lab Hematol 2018; 40 (Suppl. 01) 6-14
  • 6 Noris P, Pecci A. Hereditary thrombocytopenias: a growing list of disorders. Hematology (Am Soc Hematol Educ Program) 2017; 2017 (01) 385-399
  • 7 Peyvandi F, Menegatti M, Palla R. Rare bleeding disorders: worldwide efforts for classification, diagnosis, and management. Semin Thromb Hemost 2013; 39 (06) 579-584
  • 8 Songdej N, Rao AK. Hematopoietic transcription factor mutations: important players in inherited platelet defects. Blood 2017; 129 (21) 2873-2881
  • 9 Sánchez-Guiu I, Antón AI, Padilla J. , et al. Functional and molecular characterization of inherited platelet disorders in the Iberian Peninsula: results from a collaborative study. Orphanet J Rare Dis 2014; 9: 213
  • 10 Lozano ML, Rivera J, Sánchez-Guiu I, Vicente V. Towards the targeted management of Chediak-Higashi syndrome. Orphanet J Rare Dis 2014; 9: 132
  • 11 Pecci A, Klersy C, Gresele P. , et al. MYH9-related disease: a novel prognostic model to predict the clinical evolution of the disease based on genotype-phenotype correlations. Hum Mutat 2014; 35 (02) 236-247
  • 12 Palla R, Peyvandi F, Shapiro AD. Rare bleeding disorders: diagnosis and treatment. Blood 2015; 125 (13) 2052-2061
  • 13 Ivaškevičius V, Biswas A, Garly ML, Oldenburg J. Comparison of F13A1 gene mutations in 73 patients treated with recombinant FXIII-A2 . Haemophilia 2017; 23 (03) e194-e203
  • 14 Venter JC, Adams MD, Myers EW. , et al. The sequence of the human genome. Science 2001; 291 (5507): 1304-1351
  • 15 Heremans J, Freson K. High-throughput sequencing for diagnosing platelet disorders: lessons learned from exploring the causes of bleeding disorders. Int J Lab Hematol 2018; 40 (Suppl. 01) 89-96
  • 16 Bastida JM, Palma-Barqueros V, Lozano ML. , et al. A modern approach to the molecular diagnosis of inherited bleeding disorders. J Mol Genet Med 2018; 12: 322
  • 17 Watson SP, Lowe GC, Lordkipanidzé M, Morgan NV. ; GAPP consortium. Genotyping and phenotyping of platelet function disorders. J Thromb Haemost 2013; 11 (Suppl. 01) 351-363
  • 18 Westbury SK, Mumford AD. Genomics of platelet disorders. Haemophilia 2016; 22 (Suppl. 05) 20-24
  • 19 Sivapalaratnam S, Collins J, Gomez K. Diagnosis of inherited bleeding disorders in the genomic era. Br J Haematol 2017; 179 (03) 363-376
  • 20 Maclachlan A, Watson SP, Morgan NV. Inherited platelet disorders: insight from platelet genomics using next-generation sequencing. Platelets 2017; 28 (01) 14-19
  • 21 Freson K, Turro E. High-throughput sequencing approaches for diagnosing hereditary bleeding and platelet disorders. J Thromb Haemost 2017; 15 (07) 1262-1272
  • 22 Ng SB, Turner EH, Robertson PD. , et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 2009; 461 (7261): 272-276
  • 23 Lu JT, Campeau PM, Lee BH. Genotype-phenotype correlation--promiscuity in the era of next-generation sequencing. N Engl J Med 2014; 371 (07) 593-596
  • 24 Ewans LJ, Schofield D, Shrestha R. , et al. Whole-exome sequencing reanalysis at 12 months boosts diagnosis and is cost-effective when applied early in Mendelian disorders. Genet Med 2018 (e-pub ahead of print). doi:10.1038/gim.2018.39
  • 25 Sikkema-Raddatz B, Johansson LF, de Boer EN. , et al. Targeted next-generation sequencing can replace Sanger sequencing in clinical diagnostics. Hum Mutat 2013; 34 (07) 1035-1042
  • 26 Weaver JM, Edwards PA. Targeted next-generation sequencing for routine clinical screening of mutations. Genome Med 2011; 3 (09) 58
  • 27 Nurden AT, Nurden P. High-throughput sequencing for rapid diagnosis of inherited platelet disorders: a case for a European consensus. Haematologica 2018; 103 (01) 6-8
  • 28 Biesecker LG, Green RC. Diagnostic clinical genome and exome sequencing. N Engl J Med 2014; 370 (25) 2418-2425
  • 29 Petersen BS, Fredrich B, Hoeppner MP, Ellinghaus D, Franke A. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet 2017; 18 (01) 14
  • 30 Rosenbloom KR, Dreszer TR, Pheasant M. , et al. ENCODE whole-genome data in the UCSC Genome Browser. Nucleic Acids Res 2010; 38 (Database issue): D620-D625
  • 31 Laffan M. ; BRIDGE Bleeding and Platelet Disorders Consortium. A whole genome approach to platelet and bleeding disorders. Hamostaseologie 2016; 36 (03) 161-166
  • 32 Yang Y, Muzny DM, Reid JG. , et al. Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N Engl J Med 2013; 369 (16) 1502-1511
  • 33 de Koning TJ, Jongbloed JD, Sikkema-Raddatz B, Sinke RJ. Targeted next-generation sequencing panels for monogenetic disorders in clinical diagnostics: the opportunities and challenges. Expert Rev Mol Diagn 2015; 15 (01) 61-70
  • 34 Stritt S, Nurden P, Turro E. , et al; BRIDGE-BPD Consortium. A gain-of-function variant in DIAPH1 causes dominant macrothrombocytopenia and hearing loss. Blood 2016; 127 (23) 2903-2914
  • 35 Turro E, Greene D, Wijgaerts A. , et al; BRIDGE-BPD Consortium. A dominant gain-of-function mutation in universal tyrosine kinase SRC causes thrombocytopenia, myelofibrosis, bleeding, and bone pathologies. Sci Transl Med 2016; 8 (328) 328ra30
  • 36 Germeshausen M, Ancliff P, Estrada J. , et al. MECOM-associated syndrome: a heterogeneous inherited bone marrow failure syndrome with amegakaryocytic thrombocytopenia. Blood Adv 2018; 2 (06) 586-596
  • 37 Leo VC, Morgan NV, Bem D. , et al; UK GAPP Study Group. Use of next-generation sequencing and candidate gene analysis to identify underlying defects in patients with inherited platelet function disorders. J Thromb Haemost 2015; 13 (04) 643-650
  • 38 Johnson B, Lowe GC, Futterer J. , et al; UK GAPP Study Group. Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects. Haematologica 2016; 101 (10) 1170-1179
  • 39 Stockley J, Morgan NV, Bem D. , et al; UK Genotyping and Phenotyping of Platelets Study Group. Enrichment of FLI1 and RUNX1 mutations in families with excessive bleeding and platelet dense granule secretion defects. Blood 2013; 122 (25) 4090-4093
  • 40 Fletcher SJ, Johnson B, Lowe GC. , et al; UK Genotyping and Phenotyping of Platelets study group. SLFN14 mutations underlie thrombocytopenia with excessive bleeding and platelet secretion defects. J Clin Invest 2015; 125 (09) 3600-3605
  • 41 Maclachlan A, Dolan G, Grimley C, Watson SP, Morgan NV. ; On Behalf Of The Uk Gapp Study Group. Whole exome sequencing identifies a mutation in thrombomodulin as the genetic cause of a suspected platelet disorder in a family with normal platelet function. Platelets 2017; 28 (06) 611-613
  • 42 Leinøe E, Zetterberg E, Kinalis S. , et al. Application of whole-exome sequencing to direct the specific functional testing and diagnosis of rare inherited bleeding disorders in patients from the Öresund Region, Scandinavia. Br J Haematol 2017; 179 (02) 308-322
  • 43 Altmüller J, Budde BS, Nürnberg P. Enrichment of target sequences for next-generation sequencing applications in research and diagnostics. Biol Chem 2014; 395 (02) 231-237
  • 44 Rehm HL, Bale SJ, Bayrak-Toydemir P. , et al; Working Group of the American College of Medical Genetics and Genomics Laboratory Quality Assurance Commitee. ACMG clinical laboratory standards for next-generation sequencing. Genet Med 2013; 15 (09) 733-747
  • 45 Jalali Sefid Dashti M, Gamieldien J. A practical guide to filtering and prioritizing genetic variants. Biotechniques 2017; 62 (01) 18-30
  • 46 Richards S, Aziz N, Bale S. , et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17 (05) 405-424
  • 47 Amendola LM, Jarvik GP, Leo MC. , et al. Performance of ACMG-AMP variant- interpretation guidelines among nine laboratories in the Clinical Sequencing Exploratory Research Consortium. Am J Hum Genet 2016; 98 (06) 1067-1076
  • 48 Simeoni I, Stephens JC, Hu F. , et al. A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders. Blood 2016; 127 (23) 2791-2803
  • 49 Rabbolini DJ, Chun Y, Latimer M. , et al. Diagnosis and treatment of MYH9-RD in an Australasian cohort with thrombocytopenia. Platelets 2017 (e-pub ahead of print. doi:10.1080/09537104.2017.1356920
  • 50 Rabbolini DJ, Morel-Kopp MC, Ward CM, Stevenson WS. GFI1B variants associated with thrombocytopenia. Platelets 2017; 28 (05) 525-527
  • 51 Stevenson WS, Rabbolini DJ, Beutler L. , et al. Paris-Trousseau thrombocytopenia is phenocopied by the autosomal recessive inheritance of a DNA-binding domain mutation in FLI1. Blood 2015; 126 (17) 2027-2030
  • 52 Rabbolini DJ, Morel-Kopp MC, Chen Q. , et al. Thrombocytopenia and CD34 expression is decoupled from α-granule deficiency with mutation of the first growth factor-independent 1B zinc finger. J Thromb Haemost 2017; 15 (11) 2245-2258
  • 53 Bastida JM, Del Rey M, Lozano ML. , et al. Design and application of a 23-gene panel by next-generation sequencing for inherited coagulation bleeding disorders. Haemophilia 2016; 22 (04) 590-597
  • 54 Bastida JM, González-Porras JR, Jiménez C. , et al. Application of a molecular diagnostic algorithm for haemophilia A and B using next-generation sequencing of entire F8, F9 and VWF genes. Thromb Haemost 2017; 117 (01) 66-74
  • 55 Bastida JM, Lozano ML, Benito R. , et al. Introducing high-throughput sequencing into mainstream genetic diagnosis practice in inherited platelet disorders. Haematologica 2018; 103 (01) 148-162
  • 56 Ganaha A, Kaname T, Shinjou A. , et al. Progressive macrothrombocytopenia and hearing loss in a large family with DIAPH1 related disease. Am J Med Genet A 2017; 173 (10) 2826-2830
  • 57 Bastida JM, Del Rey M, Revilla N. , et al. Wiskott-Aldrich syndrome in a child presenting with macrothrombocytopenia. Platelets 2017; 28 (04) 417-420
  • 58 Bastida JM, Benito R, Janusz K. , et al. Two novel variants of the ABCG5 gene cause xanthelasmas and macrothrombocytopenia: a brief review of hematologic abnormalities of sitosterolemia. J Thromb Haemost 2017; 15 (09) 1859-1866
  • 59 Bastida JM, Girós ML, Benito R, Janusz K, Hernandez-Rivas JM, Gonzalez-Porras JR. Sitosterolemia: diagnosis, metabolic and hematological abnormalities, cardiovascular disease and management. Curr Med Chem 2018; 25: 1-9
  • 60 Nurden AT, Fiore M, Nurden P, Pillois X. Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood 2011; 118 (23) 5996-6005
  • 61 Stefanini L, Bergmeier W. CalDAG-GEFI and platelet activation. Platelets 2010; 21 (04) 239-243
  • 62 Svensson L, Howarth K, McDowall A. , et al. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med 2009; 15 (03) 306-312
  • 63 Canault M, Ghalloussi D, Grosdidier C. , et al. Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function and causes severe bleeding. J Exp Med 2014; 211 (07) 1349-1362
  • 64 Lozano ML, Cook A, Bastida JM. , et al. Novel mutations in RASGRP2, which encodes CalDAG-GEFI, abrogate Rap1 activation, causing platelet dysfunction. Blood 2016; 128 (09) 1282-1289
  • 65 Sevivas T, Bastida JM, Paul DS. , et al. Identification of two novel mutations in RASGRP2 affecting platelet CalDAG-GEFI expression and function in patients with bleeding diathesis. Platelets 2018; 29 (02) 192-195
  • 66 Bermejo E, Alberto MF, Paul DS. , et al. Marked bleeding diathesis in patients with platelet dysfunction due to a novel mutation in RASGRP2, encoding CalDAG-GEFI (p.Gly305Asp). Platelets 2018; 29 (01) 84-86
  • 67 Kato H, Nakazawa Y, Kurokawa Y. , et al. Human CalDAG-GEFI deficiency increases bleeding and delays αIIbβ3 activation. Blood 2016; 128 (23) 2729-2733
  • 68 Westbury SK, Canault M, Greene D. , et al; NIHR BioResource–Rare Diseases Consortium. Expanded repertoire of RASGRP2 variants responsible for platelet dysfunction and severe bleeding. Blood 2017; 130 (08) 1026-1030
  • 69 Peyvandi F, Hayward CP. Genomic approaches to bleeding disorders. Haemophilia 2016; 22 (Suppl. 05) 42-45
  • 70 Peyvandi F, Di Michele D, Bolton-Maggs PH, Lee CA, Tripodi A, Srivastava A. ; Project on Consensus Definitions in Rare Bleeeding Disorders of the Factor VIII/Factor IX Scientific and Standardisation Committee of the International Society on Thrombosis and Haemostasis. Classification of rare bleeding disorders (RBDs) based on the association between coagulant factor activity and clinical bleeding severity. J Thromb Haemost 2012; 10 (09) 1938-1943
  • 71 Quintavalle G, Riccardi F, Rivolta GF. , et al; Ad-Hoc Study Group. F7 gene variants modulate protein levels in a large cohort of patients with factor VII deficiency. Results from a genotype-phenotype study. Thromb Haemost 2017; 117 (08) 1455-1464
  • 72 Rivas MA, Pirinen M, Conrad DF. , et al; GTEx Consortium; Geuvadis Consortium. Human genomics. Effect of predicted protein-truncating genetic variants on the human transcriptome. Science 2015; 348 (6235): 666-669
  • 73 Casini A, Brungs T, Lavenu-Bombled C, Vilar R, Neerman-Arbez M, de Moerloose P. Genetics, diagnosis and clinical features of congenital hypodysfibrinogenemia: a systematic literature review and report of a novel mutation. J Thromb Haemost 2017; 15 (05) 876-888
  • 74 Asselta R, Paraboschi EM, Rimoldi V. , et al. Exploring the global landscape of genetic variation in coagulation factor XI deficiency. Blood 2017; 130 (04) e1-e6
  • 75 Esteban J, de la Morena-Barrio ME, Salloum-Asfar S. , et al. High incidence of FXI deficiency in a Spanish town caused by 11 different mutations and the first duplication of F11: results from the Yecla study. Haemophilia 2017; 23 (06) e488-e496
  • 76 Daber R, Sukhadia S, Morrissette JJ. Understanding the limitations of next generation sequencing informatics, an approach to clinical pipeline validation using artificial data sets. Cancer Genet 2013; 206 (12) 441-448
  • 77 Knoppers BM, Nguyen MT, Sénécal K, Tassé AM, Zawati MH. Next-generation sequencing and the return of results. Cold Spring Harb Perspect Med 2016; 6 (10) 6
  • 78 Bertier G, Hétu M, Joly Y. Unsolved challenges of clinical whole-exome sequencing: a systematic literature review of end-users' views. BMC Med Genomics 2016; 9 (01) 52
  • 79 Timmermans S, Tietbohl C, Skaperdas E. Narrating uncertainty: variants of uncertain significance (VUS) in clinical exome sequencing. BioSocieties 2017; 12: 439-458
  • 80 Feng Y, Chen D, Wang GL, Zhang VW, Wong LJ. Improved molecular diagnosis by the detection of exonic deletions with target gene capture and deep sequencing. Genet Med 2015; 17 (02) 99-107
  • 81 Johnsen JM, Fletcher SN, Huston H. , et al. Novel approach to genetic analysis and results in 3000 hemophilia patients enrolled in the My Life, Our Future initiative. Blood Adv 2017; 1 (13) 824-834
  • 82 Albers CA, Paul DS, Schulze H. , et al. Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nat Genet 2012; 44 (04) 435-439 , S1–S2
  • 83 Kannan M, Saxena R. No genetic abnormalities identified in α2IIb and β3: phenotype overcomes genotype in Glanzmann thrombasthenia. Int J Lab Hematol 2017; 39 (02) e41-e44
  • 84 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126 (04) 663-676
  • 85 Antony-Debré I, Manchev VT, Balayn N. , et al. Level of RUNX1 activity is critical for leukemic predisposition but not for thrombocytopenia. Blood 2015; 125 (06) 930-940
  • 86 Hirata S, Takayama N, Jono-Ohnishi R. , et al. Congenital amegakaryocytic thrombocytopenia iPS cells exhibit defective MPL-mediated signaling. J Clin Invest 2013; 123 (09) 3802-3814
  • 87 Lopez-Onieva L, Montes R, Lamolda M. , et al. Generation of induced pluripotent stem cells (iPSCs) from a Bernard-Soulier syndrome patient carrying a W71R mutation in the GPIX gene. Stem Cell Res (Amst) 2016; 16 (03) 692-695
  • 88 Ingrungruanglert P, Amarinthnukrowh P, Rungsiwiwut R. , et al. Wiskott-Aldrich syndrome iPS cells produce megakaryocytes with defects in cytoskeletal rearrangement and proplatelet formation. Thromb Haemost 2015; 113 (04) 792-805
  • 89 Huai C, Jia C, Sun R. , et al. CRISPR/Cas9-mediated somatic and germline gene correction to restore hemostasis in hemophilia B mice. Hum Genet 2017; 136 (07) 875-883
  • 90 Nguyen TH, Anegon I. Successful correction of hemophilia by CRISPR/Cas9 genome editing in vivo: delivery vector and immune responses are the key to success. EMBO Mol Med 2016; 8 (05) 439-441